]> www.infradead.org Git - users/jedix/linux-maple.git/blob
23467092
[users/jedix/linux-maple.git] /
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3  * Hibernate support specific for ARM64
4  *
5  * Derived from work on ARM hibernation support by:
6  *
7  * Ubuntu project, hibernation support for mach-dove
8  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10  *  https://lkml.org/lkml/2010/6/18/4
11  *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12  *  https://patchwork.kernel.org/patch/96442/
13  *
14  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15  */
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/mm.h>
20 #include <linux/pm.h>
21 #include <linux/sched.h>
22 #include <linux/suspend.h>
23 #include <linux/utsname.h>
24 #include <linux/version.h>
25
26 #include <asm/barrier.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/daifflags.h>
30 #include <asm/irqflags.h>
31 #include <asm/kexec.h>
32 #include <asm/memory.h>
33 #include <asm/mmu_context.h>
34 #include <asm/mte.h>
35 #include <asm/pgalloc.h>
36 #include <asm/pgtable-hwdef.h>
37 #include <asm/sections.h>
38 #include <asm/smp.h>
39 #include <asm/smp_plat.h>
40 #include <asm/suspend.h>
41 #include <asm/sysreg.h>
42 #include <asm/virt.h>
43
44 /*
45  * Hibernate core relies on this value being 0 on resume, and marks it
46  * __nosavedata assuming it will keep the resume kernel's '0' value. This
47  * doesn't happen with either KASLR.
48  *
49  * defined as "__visible int in_suspend __nosavedata" in
50  * kernel/power/hibernate.c
51  */
52 extern int in_suspend;
53
54 /* Do we need to reset el2? */
55 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
56
57 /* temporary el2 vectors in the __hibernate_exit_text section. */
58 extern char hibernate_el2_vectors[];
59
60 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
61 extern char __hyp_stub_vectors[];
62
63 /*
64  * The logical cpu number we should resume on, initialised to a non-cpu
65  * number.
66  */
67 static int sleep_cpu = -EINVAL;
68
69 /*
70  * Values that may not change over hibernate/resume. We put the build number
71  * and date in here so that we guarantee not to resume with a different
72  * kernel.
73  */
74 struct arch_hibernate_hdr_invariants {
75         char            uts_version[__NEW_UTS_LEN + 1];
76 };
77
78 /* These values need to be know across a hibernate/restore. */
79 static struct arch_hibernate_hdr {
80         struct arch_hibernate_hdr_invariants invariants;
81
82         /* These are needed to find the relocated kernel if built with kaslr */
83         phys_addr_t     ttbr1_el1;
84         void            (*reenter_kernel)(void);
85
86         /*
87          * We need to know where the __hyp_stub_vectors are after restore to
88          * re-configure el2.
89          */
90         phys_addr_t     __hyp_stub_vectors;
91
92         u64             sleep_cpu_mpidr;
93 } resume_hdr;
94
95 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
96 {
97         memset(i, 0, sizeof(*i));
98         memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
99 }
100
101 int pfn_is_nosave(unsigned long pfn)
102 {
103         unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
104         unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
105
106         return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
107                 crash_is_nosave(pfn);
108 }
109
110 void notrace save_processor_state(void)
111 {
112         WARN_ON(num_online_cpus() != 1);
113 }
114
115 void notrace restore_processor_state(void)
116 {
117 }
118
119 int arch_hibernation_header_save(void *addr, unsigned int max_size)
120 {
121         struct arch_hibernate_hdr *hdr = addr;
122
123         if (max_size < sizeof(*hdr))
124                 return -EOVERFLOW;
125
126         arch_hdr_invariants(&hdr->invariants);
127         hdr->ttbr1_el1          = __pa_symbol(swapper_pg_dir);
128         hdr->reenter_kernel     = _cpu_resume;
129
130         /* We can't use __hyp_get_vectors() because kvm may still be loaded */
131         if (el2_reset_needed())
132                 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
133         else
134                 hdr->__hyp_stub_vectors = 0;
135
136         /* Save the mpidr of the cpu we called cpu_suspend() on... */
137         if (sleep_cpu < 0) {
138                 pr_err("Failing to hibernate on an unknown CPU.\n");
139                 return -ENODEV;
140         }
141         hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
142         pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
143                 hdr->sleep_cpu_mpidr);
144
145         return 0;
146 }
147 EXPORT_SYMBOL(arch_hibernation_header_save);
148
149 int arch_hibernation_header_restore(void *addr)
150 {
151         int ret;
152         struct arch_hibernate_hdr_invariants invariants;
153         struct arch_hibernate_hdr *hdr = addr;
154
155         arch_hdr_invariants(&invariants);
156         if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
157                 pr_crit("Hibernate image not generated by this kernel!\n");
158                 return -EINVAL;
159         }
160
161         sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
162         pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
163                 hdr->sleep_cpu_mpidr);
164         if (sleep_cpu < 0) {
165                 pr_crit("Hibernated on a CPU not known to this kernel!\n");
166                 sleep_cpu = -EINVAL;
167                 return -EINVAL;
168         }
169
170         ret = bringup_hibernate_cpu(sleep_cpu);
171         if (ret) {
172                 sleep_cpu = -EINVAL;
173                 return ret;
174         }
175
176         resume_hdr = *hdr;
177
178         return 0;
179 }
180 EXPORT_SYMBOL(arch_hibernation_header_restore);
181
182 static int trans_pgd_map_page(pgd_t *trans_pgd, void *page,
183                        unsigned long dst_addr,
184                        pgprot_t pgprot)
185 {
186         pgd_t *pgdp;
187         p4d_t *p4dp;
188         pud_t *pudp;
189         pmd_t *pmdp;
190         pte_t *ptep;
191
192         pgdp = pgd_offset_pgd(trans_pgd, dst_addr);
193         if (pgd_none(READ_ONCE(*pgdp))) {
194                 pudp = (void *)get_safe_page(GFP_ATOMIC);
195                 if (!pudp)
196                         return -ENOMEM;
197                 pgd_populate(&init_mm, pgdp, pudp);
198         }
199
200         p4dp = p4d_offset(pgdp, dst_addr);
201         if (p4d_none(READ_ONCE(*p4dp))) {
202                 pudp = (void *)get_safe_page(GFP_ATOMIC);
203                 if (!pudp)
204                         return -ENOMEM;
205                 p4d_populate(&init_mm, p4dp, pudp);
206         }
207
208         pudp = pud_offset(p4dp, dst_addr);
209         if (pud_none(READ_ONCE(*pudp))) {
210                 pmdp = (void *)get_safe_page(GFP_ATOMIC);
211                 if (!pmdp)
212                         return -ENOMEM;
213                 pud_populate(&init_mm, pudp, pmdp);
214         }
215
216         pmdp = pmd_offset(pudp, dst_addr);
217         if (pmd_none(READ_ONCE(*pmdp))) {
218                 ptep = (void *)get_safe_page(GFP_ATOMIC);
219                 if (!ptep)
220                         return -ENOMEM;
221                 pmd_populate_kernel(&init_mm, pmdp, ptep);
222         }
223
224         ptep = pte_offset_kernel(pmdp, dst_addr);
225         set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC));
226
227         return 0;
228 }
229
230 /*
231  * Copies length bytes, starting at src_start into an new page,
232  * perform cache maintenance, then maps it at the specified address low
233  * address as executable.
234  *
235  * This is used by hibernate to copy the code it needs to execute when
236  * overwriting the kernel text. This function generates a new set of page
237  * tables, which it loads into ttbr0.
238  *
239  * Length is provided as we probably only want 4K of data, even on a 64K
240  * page system.
241  */
242 static int create_safe_exec_page(void *src_start, size_t length,
243                                  unsigned long dst_addr,
244                                  phys_addr_t *phys_dst_addr)
245 {
246         void *page = (void *)get_safe_page(GFP_ATOMIC);
247         pgd_t *trans_pgd;
248         int rc;
249
250         if (!page)
251                 return -ENOMEM;
252
253         memcpy(page, src_start, length);
254         __flush_icache_range((unsigned long)page, (unsigned long)page + length);
255
256         trans_pgd = (void *)get_safe_page(GFP_ATOMIC);
257         if (!trans_pgd)
258                 return -ENOMEM;
259
260         rc = trans_pgd_map_page(trans_pgd, page, dst_addr,
261                                 PAGE_KERNEL_EXEC);
262         if (rc)
263                 return rc;
264
265         /*
266          * Load our new page tables. A strict BBM approach requires that we
267          * ensure that TLBs are free of any entries that may overlap with the
268          * global mappings we are about to install.
269          *
270          * For a real hibernate/resume cycle TTBR0 currently points to a zero
271          * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
272          * runtime services), while for a userspace-driven test_resume cycle it
273          * points to userspace page tables (and we must point it at a zero page
274          * ourselves). Elsewhere we only (un)install the idmap with preemption
275          * disabled, so T0SZ should be as required regardless.
276          */
277         cpu_set_reserved_ttbr0();
278         local_flush_tlb_all();
279         write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1);
280         isb();
281
282         *phys_dst_addr = virt_to_phys(page);
283
284         return 0;
285 }
286
287 #define dcache_clean_range(start, end)  __flush_dcache_area(start, (end - start))
288
289 #ifdef CONFIG_ARM64_MTE
290
291 static DEFINE_XARRAY(mte_pages);
292
293 static int save_tags(struct page *page, unsigned long pfn)
294 {
295         void *tag_storage, *ret;
296
297         tag_storage = mte_allocate_tag_storage();
298         if (!tag_storage)
299                 return -ENOMEM;
300
301         mte_save_page_tags(page_address(page), tag_storage);
302
303         ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
304         if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
305                 mte_free_tag_storage(tag_storage);
306                 return xa_err(ret);
307         } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
308                 mte_free_tag_storage(ret);
309         }
310
311         return 0;
312 }
313
314 static void swsusp_mte_free_storage(void)
315 {
316         XA_STATE(xa_state, &mte_pages, 0);
317         void *tags;
318
319         xa_lock(&mte_pages);
320         xas_for_each(&xa_state, tags, ULONG_MAX) {
321                 mte_free_tag_storage(tags);
322         }
323         xa_unlock(&mte_pages);
324
325         xa_destroy(&mte_pages);
326 }
327
328 static int swsusp_mte_save_tags(void)
329 {
330         struct zone *zone;
331         unsigned long pfn, max_zone_pfn;
332         int ret = 0;
333         int n = 0;
334
335         if (!system_supports_mte())
336                 return 0;
337
338         for_each_populated_zone(zone) {
339                 max_zone_pfn = zone_end_pfn(zone);
340                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
341                         struct page *page = pfn_to_online_page(pfn);
342
343                         if (!page)
344                                 continue;
345
346                         if (!test_bit(PG_mte_tagged, &page->flags))
347                                 continue;
348
349                         ret = save_tags(page, pfn);
350                         if (ret) {
351                                 swsusp_mte_free_storage();
352                                 goto out;
353                         }
354
355                         n++;
356                 }
357         }
358         pr_info("Saved %d MTE pages\n", n);
359
360 out:
361         return ret;
362 }
363
364 static void swsusp_mte_restore_tags(void)
365 {
366         XA_STATE(xa_state, &mte_pages, 0);
367         int n = 0;
368         void *tags;
369
370         xa_lock(&mte_pages);
371         xas_for_each(&xa_state, tags, ULONG_MAX) {
372                 unsigned long pfn = xa_state.xa_index;
373                 struct page *page = pfn_to_online_page(pfn);
374
375                 mte_restore_page_tags(page_address(page), tags);
376
377                 mte_free_tag_storage(tags);
378                 n++;
379         }
380         xa_unlock(&mte_pages);
381
382         pr_info("Restored %d MTE pages\n", n);
383
384         xa_destroy(&mte_pages);
385 }
386
387 #else   /* CONFIG_ARM64_MTE */
388
389 static int swsusp_mte_save_tags(void)
390 {
391         return 0;
392 }
393
394 static void swsusp_mte_restore_tags(void)
395 {
396 }
397
398 #endif  /* CONFIG_ARM64_MTE */
399
400 int swsusp_arch_suspend(void)
401 {
402         int ret = 0;
403         unsigned long flags;
404         struct sleep_stack_data state;
405
406         if (cpus_are_stuck_in_kernel()) {
407                 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
408                 return -EBUSY;
409         }
410
411         flags = local_daif_save();
412
413         if (__cpu_suspend_enter(&state)) {
414                 /* make the crash dump kernel image visible/saveable */
415                 crash_prepare_suspend();
416
417                 ret = swsusp_mte_save_tags();
418                 if (ret)
419                         return ret;
420
421                 sleep_cpu = smp_processor_id();
422                 ret = swsusp_save();
423         } else {
424                 /* Clean kernel core startup/idle code to PoC*/
425                 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
426                 dcache_clean_range(__idmap_text_start, __idmap_text_end);
427
428                 /* Clean kvm setup code to PoC? */
429                 if (el2_reset_needed()) {
430                         dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
431                         dcache_clean_range(__hyp_text_start, __hyp_text_end);
432                 }
433
434                 swsusp_mte_restore_tags();
435
436                 /* make the crash dump kernel image protected again */
437                 crash_post_resume();
438
439                 /*
440                  * Tell the hibernation core that we've just restored
441                  * the memory
442                  */
443                 in_suspend = 0;
444
445                 sleep_cpu = -EINVAL;
446                 __cpu_suspend_exit();
447
448                 /*
449                  * Just in case the boot kernel did turn the SSBD
450                  * mitigation off behind our back, let's set the state
451                  * to what we expect it to be.
452                  */
453                 switch (arm64_get_ssbd_state()) {
454                 case ARM64_SSBD_FORCE_ENABLE:
455                 case ARM64_SSBD_KERNEL:
456                         arm64_set_ssbd_mitigation(true);
457                 }
458         }
459
460         local_daif_restore(flags);
461
462         return ret;
463 }
464
465 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
466 {
467         pte_t pte = READ_ONCE(*src_ptep);
468
469         if (pte_valid(pte)) {
470                 /*
471                  * Resume will overwrite areas that may be marked
472                  * read only (code, rodata). Clear the RDONLY bit from
473                  * the temporary mappings we use during restore.
474                  */
475                 set_pte(dst_ptep, pte_mkwrite(pte));
476         } else if (debug_pagealloc_enabled() && !pte_none(pte)) {
477                 /*
478                  * debug_pagealloc will removed the PTE_VALID bit if
479                  * the page isn't in use by the resume kernel. It may have
480                  * been in use by the original kernel, in which case we need
481                  * to put it back in our copy to do the restore.
482                  *
483                  * Before marking this entry valid, check the pfn should
484                  * be mapped.
485                  */
486                 BUG_ON(!pfn_valid(pte_pfn(pte)));
487
488                 set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
489         }
490 }
491
492 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
493                     unsigned long end)
494 {
495         pte_t *src_ptep;
496         pte_t *dst_ptep;
497         unsigned long addr = start;
498
499         dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
500         if (!dst_ptep)
501                 return -ENOMEM;
502         pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
503         dst_ptep = pte_offset_kernel(dst_pmdp, start);
504
505         src_ptep = pte_offset_kernel(src_pmdp, start);
506         do {
507                 _copy_pte(dst_ptep, src_ptep, addr);
508         } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
509
510         return 0;
511 }
512
513 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
514                     unsigned long end)
515 {
516         pmd_t *src_pmdp;
517         pmd_t *dst_pmdp;
518         unsigned long next;
519         unsigned long addr = start;
520
521         if (pud_none(READ_ONCE(*dst_pudp))) {
522                 dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
523                 if (!dst_pmdp)
524                         return -ENOMEM;
525                 pud_populate(&init_mm, dst_pudp, dst_pmdp);
526         }
527         dst_pmdp = pmd_offset(dst_pudp, start);
528
529         src_pmdp = pmd_offset(src_pudp, start);
530         do {
531                 pmd_t pmd = READ_ONCE(*src_pmdp);
532
533                 next = pmd_addr_end(addr, end);
534                 if (pmd_none(pmd))
535                         continue;
536                 if (pmd_table(pmd)) {
537                         if (copy_pte(dst_pmdp, src_pmdp, addr, next))
538                                 return -ENOMEM;
539                 } else {
540                         set_pmd(dst_pmdp,
541                                 __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
542                 }
543         } while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
544
545         return 0;
546 }
547
548 static int copy_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start,
549                     unsigned long end)
550 {
551         pud_t *dst_pudp;
552         pud_t *src_pudp;
553         unsigned long next;
554         unsigned long addr = start;
555
556         if (p4d_none(READ_ONCE(*dst_p4dp))) {
557                 dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
558                 if (!dst_pudp)
559                         return -ENOMEM;
560                 p4d_populate(&init_mm, dst_p4dp, dst_pudp);
561         }
562         dst_pudp = pud_offset(dst_p4dp, start);
563
564         src_pudp = pud_offset(src_p4dp, start);
565         do {
566                 pud_t pud = READ_ONCE(*src_pudp);
567
568                 next = pud_addr_end(addr, end);
569                 if (pud_none(pud))
570                         continue;
571                 if (pud_table(pud)) {
572                         if (copy_pmd(dst_pudp, src_pudp, addr, next))
573                                 return -ENOMEM;
574                 } else {
575                         set_pud(dst_pudp,
576                                 __pud(pud_val(pud) & ~PUD_SECT_RDONLY));
577                 }
578         } while (dst_pudp++, src_pudp++, addr = next, addr != end);
579
580         return 0;
581 }
582
583 static int copy_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
584                     unsigned long end)
585 {
586         p4d_t *dst_p4dp;
587         p4d_t *src_p4dp;
588         unsigned long next;
589         unsigned long addr = start;
590
591         dst_p4dp = p4d_offset(dst_pgdp, start);
592         src_p4dp = p4d_offset(src_pgdp, start);
593         do {
594                 next = p4d_addr_end(addr, end);
595                 if (p4d_none(READ_ONCE(*src_p4dp)))
596                         continue;
597                 if (copy_pud(dst_p4dp, src_p4dp, addr, next))
598                         return -ENOMEM;
599         } while (dst_p4dp++, src_p4dp++, addr = next, addr != end);
600
601         return 0;
602 }
603
604 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
605                             unsigned long end)
606 {
607         unsigned long next;
608         unsigned long addr = start;
609         pgd_t *src_pgdp = pgd_offset_k(start);
610
611         dst_pgdp = pgd_offset_pgd(dst_pgdp, start);
612         do {
613                 next = pgd_addr_end(addr, end);
614                 if (pgd_none(READ_ONCE(*src_pgdp)))
615                         continue;
616                 if (copy_p4d(dst_pgdp, src_pgdp, addr, next))
617                         return -ENOMEM;
618         } while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
619
620         return 0;
621 }
622
623 static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start,
624                           unsigned long end)
625 {
626         int rc;
627         pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
628
629         if (!trans_pgd) {
630                 pr_err("Failed to allocate memory for temporary page tables.\n");
631                 return -ENOMEM;
632         }
633
634         rc = copy_page_tables(trans_pgd, start, end);
635         if (!rc)
636                 *dst_pgdp = trans_pgd;
637
638         return rc;
639 }
640
641 /*
642  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
643  *
644  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
645  * we don't need to free it here.
646  */
647 int swsusp_arch_resume(void)
648 {
649         int rc;
650         void *zero_page;
651         size_t exit_size;
652         pgd_t *tmp_pg_dir;
653         phys_addr_t phys_hibernate_exit;
654         void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
655                                           void *, phys_addr_t, phys_addr_t);
656
657         /*
658          * Restoring the memory image will overwrite the ttbr1 page tables.
659          * Create a second copy of just the linear map, and use this when
660          * restoring.
661          */
662         rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END);
663         if (rc)
664                 return rc;
665
666         /*
667          * We need a zero page that is zero before & after resume in order to
668          * to break before make on the ttbr1 page tables.
669          */
670         zero_page = (void *)get_safe_page(GFP_ATOMIC);
671         if (!zero_page) {
672                 pr_err("Failed to allocate zero page.\n");
673                 return -ENOMEM;
674         }
675
676         /*
677          * Locate the exit code in the bottom-but-one page, so that *NULL
678          * still has disastrous affects.
679          */
680         hibernate_exit = (void *)PAGE_SIZE;
681         exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
682         /*
683          * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
684          * a new set of ttbr0 page tables and load them.
685          */
686         rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
687                                    (unsigned long)hibernate_exit,
688                                    &phys_hibernate_exit);
689         if (rc) {
690                 pr_err("Failed to create safe executable page for hibernate_exit code.\n");
691                 return rc;
692         }
693
694         /*
695          * The hibernate exit text contains a set of el2 vectors, that will
696          * be executed at el2 with the mmu off in order to reload hyp-stub.
697          */
698         __flush_dcache_area(hibernate_exit, exit_size);
699
700         /*
701          * KASLR will cause the el2 vectors to be in a different location in
702          * the resumed kernel. Load hibernate's temporary copy into el2.
703          *
704          * We can skip this step if we booted at EL1, or are running with VHE.
705          */
706         if (el2_reset_needed()) {
707                 phys_addr_t el2_vectors = phys_hibernate_exit;  /* base */
708                 el2_vectors += hibernate_el2_vectors -
709                                __hibernate_exit_text_start;     /* offset */
710
711                 __hyp_set_vectors(el2_vectors);
712         }
713
714         hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
715                        resume_hdr.reenter_kernel, restore_pblist,
716                        resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
717
718         return 0;
719 }
720
721 int hibernate_resume_nonboot_cpu_disable(void)
722 {
723         if (sleep_cpu < 0) {
724                 pr_err("Failing to resume from hibernate on an unknown CPU.\n");
725                 return -ENODEV;
726         }
727
728         return freeze_secondary_cpus(sleep_cpu);
729 }