1 // SPDX-License-Identifier: GPL-2.0-only
 
   3  * Kernel-based Virtual Machine driver for Linux
 
   5  * This module enables machines with Intel VT-x extensions to run virtual
 
   6  * machines without emulation or binary translation.
 
   8  * Copyright (C) 2006 Qumranet, Inc.
 
   9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 
  12  *   Avi Kivity   <avi@qumranet.com>
 
  13  *   Yaniv Kamay  <yaniv@qumranet.com>
 
  16 #include <linux/highmem.h>
 
  17 #include <linux/hrtimer.h>
 
  18 #include <linux/kernel.h>
 
  19 #include <linux/kvm_host.h>
 
  20 #include <linux/module.h>
 
  21 #include <linux/moduleparam.h>
 
  22 #include <linux/mod_devicetable.h>
 
  24 #include <linux/objtool.h>
 
  25 #include <linux/sched.h>
 
  26 #include <linux/sched/smt.h>
 
  27 #include <linux/slab.h>
 
  28 #include <linux/tboot.h>
 
  29 #include <linux/trace_events.h>
 
  30 #include <linux/entry-kvm.h>
 
  35 #include <asm/cpu_device_id.h>
 
  36 #include <asm/debugreg.h>
 
  38 #include <asm/fpu/internal.h>
 
  39 #include <asm/idtentry.h>
 
  41 #include <asm/irq_remapping.h>
 
  42 #include <asm/kexec.h>
 
  43 #include <asm/perf_event.h>
 
  44 #include <asm/mmu_context.h>
 
  45 #include <asm/mshyperv.h>
 
  46 #include <asm/mwait.h>
 
  47 #include <asm/spec-ctrl.h>
 
  48 #include <asm/virtext.h>
 
  51 #include "capabilities.h"
 
  55 #include "kvm_onhyperv.h"
 
  57 #include "kvm_cache_regs.h"
 
  69 MODULE_AUTHOR("Qumranet");
 
  70 MODULE_LICENSE("GPL");
 
  73 static const struct x86_cpu_id vmx_cpu_id[] = {
 
  74         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
 
  77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
 
  80 bool __read_mostly enable_vpid = 1;
 
  81 module_param_named(vpid, enable_vpid, bool, 0444);
 
  83 static bool __read_mostly enable_vnmi = 1;
 
  84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
 
  86 bool __read_mostly flexpriority_enabled = 1;
 
  87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
 
  89 bool __read_mostly enable_ept = 1;
 
  90 module_param_named(ept, enable_ept, bool, S_IRUGO);
 
  92 bool __read_mostly enable_unrestricted_guest = 1;
 
  93 module_param_named(unrestricted_guest,
 
  94                         enable_unrestricted_guest, bool, S_IRUGO);
 
  96 bool __read_mostly enable_ept_ad_bits = 1;
 
  97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
 
  99 static bool __read_mostly emulate_invalid_guest_state = true;
 
 100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
 
 102 static bool __read_mostly fasteoi = 1;
 
 103 module_param(fasteoi, bool, S_IRUGO);
 
 105 module_param(enable_apicv, bool, S_IRUGO);
 
 108  * If nested=1, nested virtualization is supported, i.e., guests may use
 
 109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
 
 110  * use VMX instructions.
 
 112 static bool __read_mostly nested = 1;
 
 113 module_param(nested, bool, S_IRUGO);
 
 115 bool __read_mostly enable_pml = 1;
 
 116 module_param_named(pml, enable_pml, bool, S_IRUGO);
 
 118 static bool __read_mostly dump_invalid_vmcs = 0;
 
 119 module_param(dump_invalid_vmcs, bool, 0644);
 
 121 #define MSR_BITMAP_MODE_X2APIC          1
 
 122 #define MSR_BITMAP_MODE_X2APIC_APICV    2
 
 124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
 
 126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
 
 127 static int __read_mostly cpu_preemption_timer_multi;
 
 128 static bool __read_mostly enable_preemption_timer = 1;
 
 130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
 
 133 extern bool __read_mostly allow_smaller_maxphyaddr;
 
 134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
 
 136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
 
 137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
 
 138 #define KVM_VM_CR0_ALWAYS_ON                            \
 
 139         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
 
 140          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
 
 142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
 
 143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 
 144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 
 146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 
 148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
 
 149         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
 
 150         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
 
 151         RTIT_STATUS_BYTECNT))
 
 154  * List of MSRs that can be directly passed to the guest.
 
 155  * In addition to these x2apic and PT MSRs are handled specially.
 
 157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
 
 166         MSR_IA32_SYSENTER_CS,
 
 167         MSR_IA32_SYSENTER_ESP,
 
 168         MSR_IA32_SYSENTER_EIP,
 
 170         MSR_CORE_C3_RESIDENCY,
 
 171         MSR_CORE_C6_RESIDENCY,
 
 172         MSR_CORE_C7_RESIDENCY,
 
 176  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 
 177  * ple_gap:    upper bound on the amount of time between two successive
 
 178  *             executions of PAUSE in a loop. Also indicate if ple enabled.
 
 179  *             According to test, this time is usually smaller than 128 cycles.
 
 180  * ple_window: upper bound on the amount of time a guest is allowed to execute
 
 181  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 
 182  *             less than 2^12 cycles
 
 183  * Time is measured based on a counter that runs at the same rate as the TSC,
 
 184  * refer SDM volume 3b section 21.6.13 & 22.1.3.
 
 186 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
 
 187 module_param(ple_gap, uint, 0444);
 
 189 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 
 190 module_param(ple_window, uint, 0444);
 
 192 /* Default doubles per-vcpu window every exit. */
 
 193 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 
 194 module_param(ple_window_grow, uint, 0444);
 
 196 /* Default resets per-vcpu window every exit to ple_window. */
 
 197 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 
 198 module_param(ple_window_shrink, uint, 0444);
 
 200 /* Default is to compute the maximum so we can never overflow. */
 
 201 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 
 202 module_param(ple_window_max, uint, 0444);
 
 204 /* Default is SYSTEM mode, 1 for host-guest mode */
 
 205 int __read_mostly pt_mode = PT_MODE_SYSTEM;
 
 206 module_param(pt_mode, int, S_IRUGO);
 
 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
 
 209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
 
 210 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
 
 212 /* Storage for pre module init parameter parsing */
 
 213 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
 
 215 static const struct {
 
 218 } vmentry_l1d_param[] = {
 
 219         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
 
 220         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
 
 221         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
 
 222         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
 
 223         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
 
 224         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
 
 227 #define L1D_CACHE_ORDER 4
 
 228 static void *vmx_l1d_flush_pages;
 
 230 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
 
 235         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
 
 236                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
 
 241                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
 
 245         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
 
 248                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
 
 249                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
 
 250                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
 
 255         /* If set to auto use the default l1tf mitigation method */
 
 256         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
 
 257                 switch (l1tf_mitigation) {
 
 258                 case L1TF_MITIGATION_OFF:
 
 259                         l1tf = VMENTER_L1D_FLUSH_NEVER;
 
 261                 case L1TF_MITIGATION_FLUSH_NOWARN:
 
 262                 case L1TF_MITIGATION_FLUSH:
 
 263                 case L1TF_MITIGATION_FLUSH_NOSMT:
 
 264                         l1tf = VMENTER_L1D_FLUSH_COND;
 
 266                 case L1TF_MITIGATION_FULL:
 
 267                 case L1TF_MITIGATION_FULL_FORCE:
 
 268                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 
 271         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
 
 272                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 
 275         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
 
 276             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
 
 278                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
 
 279                  * lifetime and so should not be charged to a memcg.
 
 281                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
 
 284                 vmx_l1d_flush_pages = page_address(page);
 
 287                  * Initialize each page with a different pattern in
 
 288                  * order to protect against KSM in the nested
 
 289                  * virtualization case.
 
 291                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
 
 292                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
 
 297         l1tf_vmx_mitigation = l1tf;
 
 299         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
 
 300                 static_branch_enable(&vmx_l1d_should_flush);
 
 302                 static_branch_disable(&vmx_l1d_should_flush);
 
 304         if (l1tf == VMENTER_L1D_FLUSH_COND)
 
 305                 static_branch_enable(&vmx_l1d_flush_cond);
 
 307                 static_branch_disable(&vmx_l1d_flush_cond);
 
 311 static int vmentry_l1d_flush_parse(const char *s)
 
 316                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
 
 317                         if (vmentry_l1d_param[i].for_parse &&
 
 318                             sysfs_streq(s, vmentry_l1d_param[i].option))
 
 325 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
 
 329         l1tf = vmentry_l1d_flush_parse(s);
 
 333         if (!boot_cpu_has(X86_BUG_L1TF))
 
 337          * Has vmx_init() run already? If not then this is the pre init
 
 338          * parameter parsing. In that case just store the value and let
 
 339          * vmx_init() do the proper setup after enable_ept has been
 
 342         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
 
 343                 vmentry_l1d_flush_param = l1tf;
 
 347         mutex_lock(&vmx_l1d_flush_mutex);
 
 348         ret = vmx_setup_l1d_flush(l1tf);
 
 349         mutex_unlock(&vmx_l1d_flush_mutex);
 
 353 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
 
 355         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
 
 356                 return sprintf(s, "???\n");
 
 358         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
 
 361 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
 
 362         .set = vmentry_l1d_flush_set,
 
 363         .get = vmentry_l1d_flush_get,
 
 365 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
 
 367 static u32 vmx_segment_access_rights(struct kvm_segment *var);
 
 369 void vmx_vmexit(void);
 
 371 #define vmx_insn_failed(fmt...)         \
 
 374         pr_warn_ratelimited(fmt);       \
 
 377 asmlinkage void vmread_error(unsigned long field, bool fault)
 
 380                 kvm_spurious_fault();
 
 382                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
 
 385 noinline void vmwrite_error(unsigned long field, unsigned long value)
 
 387         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
 
 388                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
 
 391 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
 
 393         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
 
 396 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
 
 398         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
 
 401 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
 
 403         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
 
 407 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
 
 409         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
 
 413 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 
 414 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 
 416  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 
 417  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 
 419 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 
 421 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 
 422 static DEFINE_SPINLOCK(vmx_vpid_lock);
 
 424 struct vmcs_config vmcs_config;
 
 425 struct vmx_capability vmx_capability;
 
 427 #define VMX_SEGMENT_FIELD(seg)                                  \
 
 428         [VCPU_SREG_##seg] = {                                   \
 
 429                 .selector = GUEST_##seg##_SELECTOR,             \
 
 430                 .base = GUEST_##seg##_BASE,                     \
 
 431                 .limit = GUEST_##seg##_LIMIT,                   \
 
 432                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 
 435 static const struct kvm_vmx_segment_field {
 
 440 } kvm_vmx_segment_fields[] = {
 
 441         VMX_SEGMENT_FIELD(CS),
 
 442         VMX_SEGMENT_FIELD(DS),
 
 443         VMX_SEGMENT_FIELD(ES),
 
 444         VMX_SEGMENT_FIELD(FS),
 
 445         VMX_SEGMENT_FIELD(GS),
 
 446         VMX_SEGMENT_FIELD(SS),
 
 447         VMX_SEGMENT_FIELD(TR),
 
 448         VMX_SEGMENT_FIELD(LDTR),
 
 451 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
 
 453         vmx->segment_cache.bitmask = 0;
 
 456 static unsigned long host_idt_base;
 
 458 #if IS_ENABLED(CONFIG_HYPERV)
 
 459 static bool __read_mostly enlightened_vmcs = true;
 
 460 module_param(enlightened_vmcs, bool, 0444);
 
 462 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
 
 464         struct hv_enlightened_vmcs *evmcs;
 
 465         struct hv_partition_assist_pg **p_hv_pa_pg =
 
 466                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
 
 468          * Synthetic VM-Exit is not enabled in current code and so All
 
 469          * evmcs in singe VM shares same assist page.
 
 472                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
 
 477         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
 
 479         evmcs->partition_assist_page =
 
 481         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
 
 482         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
 
 487 #endif /* IS_ENABLED(CONFIG_HYPERV) */
 
 490  * Comment's format: document - errata name - stepping - processor name.
 
 492  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
 
 494 static u32 vmx_preemption_cpu_tfms[] = {
 
 495 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
 
 497 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
 
 498 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
 
 499 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
 
 501 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
 
 503 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
 
 504 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
 
 506  * 320767.pdf - AAP86  - B1 -
 
 507  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
 
 510 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
 
 512 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
 
 514 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
 
 516  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
 
 517  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
 
 518  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
 
 520  /* Xeon E3-1220 V2 */
 
 524 static inline bool cpu_has_broken_vmx_preemption_timer(void)
 
 526         u32 eax = cpuid_eax(0x00000001), i;
 
 528         /* Clear the reserved bits */
 
 529         eax &= ~(0x3U << 14 | 0xfU << 28);
 
 530         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
 
 531                 if (eax == vmx_preemption_cpu_tfms[i])
 
 537 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
 
 539         return flexpriority_enabled && lapic_in_kernel(vcpu);
 
 542 static inline bool report_flexpriority(void)
 
 544         return flexpriority_enabled;
 
 547 static int possible_passthrough_msr_slot(u32 msr)
 
 551         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
 
 552                 if (vmx_possible_passthrough_msrs[i] == msr)
 
 558 static bool is_valid_passthrough_msr(u32 msr)
 
 563         case 0x800 ... 0x8ff:
 
 564                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
 
 566         case MSR_IA32_RTIT_STATUS:
 
 567         case MSR_IA32_RTIT_OUTPUT_BASE:
 
 568         case MSR_IA32_RTIT_OUTPUT_MASK:
 
 569         case MSR_IA32_RTIT_CR3_MATCH:
 
 570         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
 
 571                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
 
 574         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
 
 575         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
 
 576         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
 
 577         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
 
 578         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
 
 579                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
 
 583         r = possible_passthrough_msr_slot(msr) != -ENOENT;
 
 585         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
 
 590 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
 
 594         i = kvm_find_user_return_msr(msr);
 
 596                 return &vmx->guest_uret_msrs[i];
 
 600 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
 
 601                                   struct vmx_uret_msr *msr, u64 data)
 
 603         unsigned int slot = msr - vmx->guest_uret_msrs;
 
 606         u64 old_msr_data = msr->data;
 
 608         if (msr->load_into_hardware) {
 
 610                 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
 
 613                         msr->data = old_msr_data;
 
 618 #ifdef CONFIG_KEXEC_CORE
 
 619 static void crash_vmclear_local_loaded_vmcss(void)
 
 621         int cpu = raw_smp_processor_id();
 
 622         struct loaded_vmcs *v;
 
 624         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
 
 625                             loaded_vmcss_on_cpu_link)
 
 628 #endif /* CONFIG_KEXEC_CORE */
 
 630 static void __loaded_vmcs_clear(void *arg)
 
 632         struct loaded_vmcs *loaded_vmcs = arg;
 
 633         int cpu = raw_smp_processor_id();
 
 635         if (loaded_vmcs->cpu != cpu)
 
 636                 return; /* vcpu migration can race with cpu offline */
 
 637         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
 
 638                 per_cpu(current_vmcs, cpu) = NULL;
 
 640         vmcs_clear(loaded_vmcs->vmcs);
 
 641         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
 
 642                 vmcs_clear(loaded_vmcs->shadow_vmcs);
 
 644         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
 
 647          * Ensure all writes to loaded_vmcs, including deleting it from its
 
 648          * current percpu list, complete before setting loaded_vmcs->vcpu to
 
 649          * -1, otherwise a different cpu can see vcpu == -1 first and add
 
 650          * loaded_vmcs to its percpu list before it's deleted from this cpu's
 
 651          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
 
 655         loaded_vmcs->cpu = -1;
 
 656         loaded_vmcs->launched = 0;
 
 659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
 
 661         int cpu = loaded_vmcs->cpu;
 
 664                 smp_call_function_single(cpu,
 
 665                          __loaded_vmcs_clear, loaded_vmcs, 1);
 
 668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
 
 672         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
 
 674         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
 
 675                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
 
 676                 vmx->segment_cache.bitmask = 0;
 
 678         ret = vmx->segment_cache.bitmask & mask;
 
 679         vmx->segment_cache.bitmask |= mask;
 
 683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
 
 685         u16 *p = &vmx->segment_cache.seg[seg].selector;
 
 687         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
 
 688                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
 
 692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
 
 694         ulong *p = &vmx->segment_cache.seg[seg].base;
 
 696         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
 
 697                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
 
 701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
 
 703         u32 *p = &vmx->segment_cache.seg[seg].limit;
 
 705         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
 
 706                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
 
 710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
 
 712         u32 *p = &vmx->segment_cache.seg[seg].ar;
 
 714         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
 
 715                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
 
 719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
 
 723         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
 
 724              (1u << DB_VECTOR) | (1u << AC_VECTOR);
 
 726          * Guest access to VMware backdoor ports could legitimately
 
 727          * trigger #GP because of TSS I/O permission bitmap.
 
 728          * We intercept those #GP and allow access to them anyway
 
 731         if (enable_vmware_backdoor)
 
 732                 eb |= (1u << GP_VECTOR);
 
 733         if ((vcpu->guest_debug &
 
 734              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
 
 735             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
 
 736                 eb |= 1u << BP_VECTOR;
 
 737         if (to_vmx(vcpu)->rmode.vm86_active)
 
 739         if (!vmx_need_pf_intercept(vcpu))
 
 740                 eb &= ~(1u << PF_VECTOR);
 
 742         /* When we are running a nested L2 guest and L1 specified for it a
 
 743          * certain exception bitmap, we must trap the same exceptions and pass
 
 744          * them to L1. When running L2, we will only handle the exceptions
 
 745          * specified above if L1 did not want them.
 
 747         if (is_guest_mode(vcpu))
 
 748                 eb |= get_vmcs12(vcpu)->exception_bitmap;
 
 750                 int mask = 0, match = 0;
 
 752                 if (enable_ept && (eb & (1u << PF_VECTOR))) {
 
 754                          * If EPT is enabled, #PF is currently only intercepted
 
 755                          * if MAXPHYADDR is smaller on the guest than on the
 
 756                          * host.  In that case we only care about present,
 
 757                          * non-reserved faults.  For vmcs02, however, PFEC_MASK
 
 758                          * and PFEC_MATCH are set in prepare_vmcs02_rare.
 
 760                         mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
 
 761                         match = PFERR_PRESENT_MASK;
 
 763                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
 
 764                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
 
 767         vmcs_write32(EXCEPTION_BITMAP, eb);
 
 771  * Check if MSR is intercepted for currently loaded MSR bitmap.
 
 773 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
 
 775         unsigned long *msr_bitmap;
 
 776         int f = sizeof(unsigned long);
 
 778         if (!cpu_has_vmx_msr_bitmap())
 
 781         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
 
 784                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
 
 785         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 
 787                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 
 793 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 
 794                 unsigned long entry, unsigned long exit)
 
 796         vm_entry_controls_clearbit(vmx, entry);
 
 797         vm_exit_controls_clearbit(vmx, exit);
 
 800 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
 
 804         for (i = 0; i < m->nr; ++i) {
 
 805                 if (m->val[i].index == msr)
 
 811 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
 
 814         struct msr_autoload *m = &vmx->msr_autoload;
 
 818                 if (cpu_has_load_ia32_efer()) {
 
 819                         clear_atomic_switch_msr_special(vmx,
 
 820                                         VM_ENTRY_LOAD_IA32_EFER,
 
 821                                         VM_EXIT_LOAD_IA32_EFER);
 
 825         case MSR_CORE_PERF_GLOBAL_CTRL:
 
 826                 if (cpu_has_load_perf_global_ctrl()) {
 
 827                         clear_atomic_switch_msr_special(vmx,
 
 828                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 
 829                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
 
 834         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
 
 838         m->guest.val[i] = m->guest.val[m->guest.nr];
 
 839         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 
 842         i = vmx_find_loadstore_msr_slot(&m->host, msr);
 
 847         m->host.val[i] = m->host.val[m->host.nr];
 
 848         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 
 851 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 
 852                 unsigned long entry, unsigned long exit,
 
 853                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
 
 854                 u64 guest_val, u64 host_val)
 
 856         vmcs_write64(guest_val_vmcs, guest_val);
 
 857         if (host_val_vmcs != HOST_IA32_EFER)
 
 858                 vmcs_write64(host_val_vmcs, host_val);
 
 859         vm_entry_controls_setbit(vmx, entry);
 
 860         vm_exit_controls_setbit(vmx, exit);
 
 863 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
 
 864                                   u64 guest_val, u64 host_val, bool entry_only)
 
 867         struct msr_autoload *m = &vmx->msr_autoload;
 
 871                 if (cpu_has_load_ia32_efer()) {
 
 872                         add_atomic_switch_msr_special(vmx,
 
 873                                         VM_ENTRY_LOAD_IA32_EFER,
 
 874                                         VM_EXIT_LOAD_IA32_EFER,
 
 877                                         guest_val, host_val);
 
 881         case MSR_CORE_PERF_GLOBAL_CTRL:
 
 882                 if (cpu_has_load_perf_global_ctrl()) {
 
 883                         add_atomic_switch_msr_special(vmx,
 
 884                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 
 885                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
 
 886                                         GUEST_IA32_PERF_GLOBAL_CTRL,
 
 887                                         HOST_IA32_PERF_GLOBAL_CTRL,
 
 888                                         guest_val, host_val);
 
 892         case MSR_IA32_PEBS_ENABLE:
 
 893                 /* PEBS needs a quiescent period after being disabled (to write
 
 894                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
 
 895                  * provide that period, so a CPU could write host's record into
 
 898                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
 
 901         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
 
 903                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
 
 905         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
 
 906             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
 
 907                 printk_once(KERN_WARNING "Not enough msr switch entries. "
 
 908                                 "Can't add msr %x\n", msr);
 
 913                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 
 915         m->guest.val[i].index = msr;
 
 916         m->guest.val[i].value = guest_val;
 
 923                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 
 925         m->host.val[j].index = msr;
 
 926         m->host.val[j].value = host_val;
 
 929 static bool update_transition_efer(struct vcpu_vmx *vmx)
 
 931         u64 guest_efer = vmx->vcpu.arch.efer;
 
 935         /* Shadow paging assumes NX to be available.  */
 
 937                 guest_efer |= EFER_NX;
 
 940          * LMA and LME handled by hardware; SCE meaningless outside long mode.
 
 942         ignore_bits |= EFER_SCE;
 
 944         ignore_bits |= EFER_LMA | EFER_LME;
 
 945         /* SCE is meaningful only in long mode on Intel */
 
 946         if (guest_efer & EFER_LMA)
 
 947                 ignore_bits &= ~(u64)EFER_SCE;
 
 951          * On EPT, we can't emulate NX, so we must switch EFER atomically.
 
 952          * On CPUs that support "load IA32_EFER", always switch EFER
 
 953          * atomically, since it's faster than switching it manually.
 
 955         if (cpu_has_load_ia32_efer() ||
 
 956             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
 
 957                 if (!(guest_efer & EFER_LMA))
 
 958                         guest_efer &= ~EFER_LME;
 
 959                 if (guest_efer != host_efer)
 
 960                         add_atomic_switch_msr(vmx, MSR_EFER,
 
 961                                               guest_efer, host_efer, false);
 
 963                         clear_atomic_switch_msr(vmx, MSR_EFER);
 
 967         i = kvm_find_user_return_msr(MSR_EFER);
 
 971         clear_atomic_switch_msr(vmx, MSR_EFER);
 
 973         guest_efer &= ~ignore_bits;
 
 974         guest_efer |= host_efer & ignore_bits;
 
 976         vmx->guest_uret_msrs[i].data = guest_efer;
 
 977         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
 
 984  * On 32-bit kernels, VM exits still load the FS and GS bases from the
 
 985  * VMCS rather than the segment table.  KVM uses this helper to figure
 
 986  * out the current bases to poke them into the VMCS before entry.
 
 988 static unsigned long segment_base(u16 selector)
 
 990         struct desc_struct *table;
 
 993         if (!(selector & ~SEGMENT_RPL_MASK))
 
 996         table = get_current_gdt_ro();
 
 998         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 
 999                 u16 ldt_selector = kvm_read_ldt();
 
1001                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
 
1004                 table = (struct desc_struct *)segment_base(ldt_selector);
 
1006         v = get_desc_base(&table[selector >> 3]);
 
1011 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
 
1013         return vmx_pt_mode_is_host_guest() &&
 
1014                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
 
1017 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
 
1019         /* The base must be 128-byte aligned and a legal physical address. */
 
1020         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
 
1023 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
 
1027         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
 
1028         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
 
1029         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
 
1030         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
 
1031         for (i = 0; i < addr_range; i++) {
 
1032                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
 
1033                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
 
1037 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
 
1041         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
 
1042         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
 
1043         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
 
1044         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
 
1045         for (i = 0; i < addr_range; i++) {
 
1046                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
 
1047                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
 
1051 static void pt_guest_enter(struct vcpu_vmx *vmx)
 
1053         if (vmx_pt_mode_is_system())
 
1057          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
 
1058          * Save host state before VM entry.
 
1060         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
 
1061         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
 
1062                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
 
1063                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
 
1064                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
 
1068 static void pt_guest_exit(struct vcpu_vmx *vmx)
 
1070         if (vmx_pt_mode_is_system())
 
1073         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
 
1074                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
 
1075                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
 
1078         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
 
1079         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
 
1082 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
 
1083                         unsigned long fs_base, unsigned long gs_base)
 
1085         if (unlikely(fs_sel != host->fs_sel)) {
 
1087                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
 
1089                         vmcs_write16(HOST_FS_SELECTOR, 0);
 
1090                 host->fs_sel = fs_sel;
 
1092         if (unlikely(gs_sel != host->gs_sel)) {
 
1094                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
 
1096                         vmcs_write16(HOST_GS_SELECTOR, 0);
 
1097                 host->gs_sel = gs_sel;
 
1099         if (unlikely(fs_base != host->fs_base)) {
 
1100                 vmcs_writel(HOST_FS_BASE, fs_base);
 
1101                 host->fs_base = fs_base;
 
1103         if (unlikely(gs_base != host->gs_base)) {
 
1104                 vmcs_writel(HOST_GS_BASE, gs_base);
 
1105                 host->gs_base = gs_base;
 
1109 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
 
1111         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1112         struct vmcs_host_state *host_state;
 
1113 #ifdef CONFIG_X86_64
 
1114         int cpu = raw_smp_processor_id();
 
1116         unsigned long fs_base, gs_base;
 
1120         vmx->req_immediate_exit = false;
 
1123          * Note that guest MSRs to be saved/restored can also be changed
 
1124          * when guest state is loaded. This happens when guest transitions
 
1125          * to/from long-mode by setting MSR_EFER.LMA.
 
1127         if (!vmx->guest_uret_msrs_loaded) {
 
1128                 vmx->guest_uret_msrs_loaded = true;
 
1129                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 
1130                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
 
1133                         kvm_set_user_return_msr(i,
 
1134                                                 vmx->guest_uret_msrs[i].data,
 
1135                                                 vmx->guest_uret_msrs[i].mask);
 
1139         if (vmx->nested.need_vmcs12_to_shadow_sync)
 
1140                 nested_sync_vmcs12_to_shadow(vcpu);
 
1142         if (vmx->guest_state_loaded)
 
1145         host_state = &vmx->loaded_vmcs->host_state;
 
1148          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
 
1149          * allow segment selectors with cpl > 0 or ti == 1.
 
1151         host_state->ldt_sel = kvm_read_ldt();
 
1153 #ifdef CONFIG_X86_64
 
1154         savesegment(ds, host_state->ds_sel);
 
1155         savesegment(es, host_state->es_sel);
 
1157         gs_base = cpu_kernelmode_gs_base(cpu);
 
1158         if (likely(is_64bit_mm(current->mm))) {
 
1159                 current_save_fsgs();
 
1160                 fs_sel = current->thread.fsindex;
 
1161                 gs_sel = current->thread.gsindex;
 
1162                 fs_base = current->thread.fsbase;
 
1163                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
 
1165                 savesegment(fs, fs_sel);
 
1166                 savesegment(gs, gs_sel);
 
1167                 fs_base = read_msr(MSR_FS_BASE);
 
1168                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
 
1171         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
 
1173         savesegment(fs, fs_sel);
 
1174         savesegment(gs, gs_sel);
 
1175         fs_base = segment_base(fs_sel);
 
1176         gs_base = segment_base(gs_sel);
 
1179         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
 
1180         vmx->guest_state_loaded = true;
 
1183 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
 
1185         struct vmcs_host_state *host_state;
 
1187         if (!vmx->guest_state_loaded)
 
1190         host_state = &vmx->loaded_vmcs->host_state;
 
1192         ++vmx->vcpu.stat.host_state_reload;
 
1194 #ifdef CONFIG_X86_64
 
1195         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
 
1197         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
 
1198                 kvm_load_ldt(host_state->ldt_sel);
 
1199 #ifdef CONFIG_X86_64
 
1200                 load_gs_index(host_state->gs_sel);
 
1202                 loadsegment(gs, host_state->gs_sel);
 
1205         if (host_state->fs_sel & 7)
 
1206                 loadsegment(fs, host_state->fs_sel);
 
1207 #ifdef CONFIG_X86_64
 
1208         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
 
1209                 loadsegment(ds, host_state->ds_sel);
 
1210                 loadsegment(es, host_state->es_sel);
 
1213         invalidate_tss_limit();
 
1214 #ifdef CONFIG_X86_64
 
1215         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
 
1217         load_fixmap_gdt(raw_smp_processor_id());
 
1218         vmx->guest_state_loaded = false;
 
1219         vmx->guest_uret_msrs_loaded = false;
 
1222 #ifdef CONFIG_X86_64
 
1223 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
 
1226         if (vmx->guest_state_loaded)
 
1227                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
 
1229         return vmx->msr_guest_kernel_gs_base;
 
1232 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
 
1235         if (vmx->guest_state_loaded)
 
1236                 wrmsrl(MSR_KERNEL_GS_BASE, data);
 
1238         vmx->msr_guest_kernel_gs_base = data;
 
1242 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
 
1243                         struct loaded_vmcs *buddy)
 
1245         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1246         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
 
1249         if (!already_loaded) {
 
1250                 loaded_vmcs_clear(vmx->loaded_vmcs);
 
1251                 local_irq_disable();
 
1254                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
 
1255                  * this cpu's percpu list, otherwise it may not yet be deleted
 
1256                  * from its previous cpu's percpu list.  Pairs with the
 
1257                  * smb_wmb() in __loaded_vmcs_clear().
 
1261                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
 
1262                          &per_cpu(loaded_vmcss_on_cpu, cpu));
 
1266         prev = per_cpu(current_vmcs, cpu);
 
1267         if (prev != vmx->loaded_vmcs->vmcs) {
 
1268                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
 
1269                 vmcs_load(vmx->loaded_vmcs->vmcs);
 
1272                  * No indirect branch prediction barrier needed when switching
 
1273                  * the active VMCS within a guest, e.g. on nested VM-Enter.
 
1274                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
 
1276                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
 
1277                         indirect_branch_prediction_barrier();
 
1280         if (!already_loaded) {
 
1281                 void *gdt = get_current_gdt_ro();
 
1282                 unsigned long sysenter_esp;
 
1285                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
 
1286                  * TLB entries from its previous association with the vCPU.
 
1288                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 
1291                  * Linux uses per-cpu TSS and GDT, so set these when switching
 
1292                  * processors.  See 22.2.4.
 
1294                 vmcs_writel(HOST_TR_BASE,
 
1295                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
 
1296                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
 
1298                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
 
1299                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
 
1301                 vmx->loaded_vmcs->cpu = cpu;
 
1306  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
 
1307  * vcpu mutex is already taken.
 
1309 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 
1311         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1313         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
 
1315         vmx_vcpu_pi_load(vcpu, cpu);
 
1317         vmx->host_debugctlmsr = get_debugctlmsr();
 
1320 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
 
1322         vmx_vcpu_pi_put(vcpu);
 
1324         vmx_prepare_switch_to_host(to_vmx(vcpu));
 
1327 static bool emulation_required(struct kvm_vcpu *vcpu)
 
1329         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
 
1332 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
 
1334         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1335         unsigned long rflags, save_rflags;
 
1337         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
 
1338                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
 
1339                 rflags = vmcs_readl(GUEST_RFLAGS);
 
1340                 if (vmx->rmode.vm86_active) {
 
1341                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
 
1342                         save_rflags = vmx->rmode.save_rflags;
 
1343                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
 
1345                 vmx->rflags = rflags;
 
1350 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
 
1352         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1353         unsigned long old_rflags;
 
1355         if (is_unrestricted_guest(vcpu)) {
 
1356                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
 
1357                 vmx->rflags = rflags;
 
1358                 vmcs_writel(GUEST_RFLAGS, rflags);
 
1362         old_rflags = vmx_get_rflags(vcpu);
 
1363         vmx->rflags = rflags;
 
1364         if (vmx->rmode.vm86_active) {
 
1365                 vmx->rmode.save_rflags = rflags;
 
1366                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
 
1368         vmcs_writel(GUEST_RFLAGS, rflags);
 
1370         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
 
1371                 vmx->emulation_required = emulation_required(vcpu);
 
1374 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 
1376         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 
1379         if (interruptibility & GUEST_INTR_STATE_STI)
 
1380                 ret |= KVM_X86_SHADOW_INT_STI;
 
1381         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
 
1382                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
 
1387 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 
1389         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 
1390         u32 interruptibility = interruptibility_old;
 
1392         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
 
1394         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
 
1395                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
 
1396         else if (mask & KVM_X86_SHADOW_INT_STI)
 
1397                 interruptibility |= GUEST_INTR_STATE_STI;
 
1399         if ((interruptibility != interruptibility_old))
 
1400                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
 
1403 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
 
1405         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1406         unsigned long value;
 
1409          * Any MSR write that attempts to change bits marked reserved will
 
1412         if (data & vmx->pt_desc.ctl_bitmask)
 
1416          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
 
1417          * result in a #GP unless the same write also clears TraceEn.
 
1419         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
 
1420                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
 
1424          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
 
1425          * and FabricEn would cause #GP, if
 
1426          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
 
1428         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
 
1429                 !(data & RTIT_CTL_FABRIC_EN) &&
 
1430                 !intel_pt_validate_cap(vmx->pt_desc.caps,
 
1431                                         PT_CAP_single_range_output))
 
1435          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
 
1436          * utilize encodings marked reserved will cause a #GP fault.
 
1438         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
 
1439         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
 
1440                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
 
1441                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
 
1443         value = intel_pt_validate_cap(vmx->pt_desc.caps,
 
1444                                                 PT_CAP_cycle_thresholds);
 
1445         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
 
1446                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
 
1447                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
 
1449         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
 
1450         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
 
1451                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
 
1452                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
 
1456          * If ADDRx_CFG is reserved or the encodings is >2 will
 
1457          * cause a #GP fault.
 
1459         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
 
1460         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
 
1462         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
 
1463         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
 
1465         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
 
1466         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
 
1468         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
 
1469         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
 
1475 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
 
1478          * Emulation of instructions in SGX enclaves is impossible as RIP does
 
1479          * not point  tthe failing instruction, and even if it did, the code
 
1480          * stream is inaccessible.  Inject #UD instead of exiting to userspace
 
1481          * so that guest userspace can't DoS the guest simply by triggering
 
1482          * emulation (enclaves are CPL3 only).
 
1484         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
 
1485                 kvm_queue_exception(vcpu, UD_VECTOR);
 
1491 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
 
1493         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
 
1494         unsigned long rip, orig_rip;
 
1498          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
 
1499          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
 
1500          * set when EPT misconfig occurs.  In practice, real hardware updates
 
1501          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
 
1502          * (namely Hyper-V) don't set it due to it being undefined behavior,
 
1503          * i.e. we end up advancing IP with some random value.
 
1505         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
 
1506             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
 
1507                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 
1510                  * Emulating an enclave's instructions isn't supported as KVM
 
1511                  * cannot access the enclave's memory or its true RIP, e.g. the
 
1512                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
 
1513                  * the RIP that actually triggered the VM-Exit.  But, because
 
1514                  * most instructions that cause VM-Exit will #UD in an enclave,
 
1515                  * most instruction-based VM-Exits simply do not occur.
 
1517                  * There are a few exceptions, notably the debug instructions
 
1518                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
 
1519                  * and generate #DB/#BP as expected, which KVM might intercept.
 
1520                  * But again, the CPU does the dirty work and saves an instr
 
1521                  * length of zero so VMMs don't shoot themselves in the foot.
 
1522                  * WARN if KVM tries to skip a non-zero length instruction on
 
1523                  * a VM-Exit from an enclave.
 
1528                 WARN(exit_reason.enclave_mode,
 
1529                      "KVM: skipping instruction after SGX enclave VM-Exit");
 
1531                 orig_rip = kvm_rip_read(vcpu);
 
1532                 rip = orig_rip + instr_len;
 
1533 #ifdef CONFIG_X86_64
 
1535                  * We need to mask out the high 32 bits of RIP if not in 64-bit
 
1536                  * mode, but just finding out that we are in 64-bit mode is
 
1537                  * quite expensive.  Only do it if there was a carry.
 
1539                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
 
1542                 kvm_rip_write(vcpu, rip);
 
1544                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
 
1549         /* skipping an emulated instruction also counts */
 
1550         vmx_set_interrupt_shadow(vcpu, 0);
 
1556  * Recognizes a pending MTF VM-exit and records the nested state for later
 
1559 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
 
1561         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 
1562         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1564         if (!is_guest_mode(vcpu))
 
1568          * Per the SDM, MTF takes priority over debug-trap exceptions besides
 
1569          * T-bit traps. As instruction emulation is completed (i.e. at the
 
1570          * instruction boundary), any #DB exception pending delivery must be a
 
1571          * debug-trap. Record the pending MTF state to be delivered in
 
1572          * vmx_check_nested_events().
 
1574         if (nested_cpu_has_mtf(vmcs12) &&
 
1575             (!vcpu->arch.exception.pending ||
 
1576              vcpu->arch.exception.nr == DB_VECTOR))
 
1577                 vmx->nested.mtf_pending = true;
 
1579                 vmx->nested.mtf_pending = false;
 
1582 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
 
1584         vmx_update_emulated_instruction(vcpu);
 
1585         return skip_emulated_instruction(vcpu);
 
1588 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
 
1591          * Ensure that we clear the HLT state in the VMCS.  We don't need to
 
1592          * explicitly skip the instruction because if the HLT state is set,
 
1593          * then the instruction is already executing and RIP has already been
 
1596         if (kvm_hlt_in_guest(vcpu->kvm) &&
 
1597                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
 
1598                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
 
1601 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
 
1603         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1604         unsigned nr = vcpu->arch.exception.nr;
 
1605         bool has_error_code = vcpu->arch.exception.has_error_code;
 
1606         u32 error_code = vcpu->arch.exception.error_code;
 
1607         u32 intr_info = nr | INTR_INFO_VALID_MASK;
 
1609         kvm_deliver_exception_payload(vcpu);
 
1611         if (has_error_code) {
 
1612                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
 
1613                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
 
1616         if (vmx->rmode.vm86_active) {
 
1618                 if (kvm_exception_is_soft(nr))
 
1619                         inc_eip = vcpu->arch.event_exit_inst_len;
 
1620                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
 
1624         WARN_ON_ONCE(vmx->emulation_required);
 
1626         if (kvm_exception_is_soft(nr)) {
 
1627                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
 
1628                              vmx->vcpu.arch.event_exit_inst_len);
 
1629                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
 
1631                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
 
1633         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
 
1635         vmx_clear_hlt(vcpu);
 
1638 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
 
1639                                bool load_into_hardware)
 
1641         struct vmx_uret_msr *uret_msr;
 
1643         uret_msr = vmx_find_uret_msr(vmx, msr);
 
1647         uret_msr->load_into_hardware = load_into_hardware;
 
1651  * Set up the vmcs to automatically save and restore system
 
1652  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
 
1653  * mode, as fiddling with msrs is very expensive.
 
1655 static void setup_msrs(struct vcpu_vmx *vmx)
 
1657 #ifdef CONFIG_X86_64
 
1658         bool load_syscall_msrs;
 
1661          * The SYSCALL MSRs are only needed on long mode guests, and only
 
1662          * when EFER.SCE is set.
 
1664         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
 
1665                             (vmx->vcpu.arch.efer & EFER_SCE);
 
1667         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
 
1668         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
 
1669         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
 
1671         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
 
1673         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
 
1674                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
 
1675                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
 
1678          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
 
1679          * kernel and old userspace.  If those guests run on a tsx=off host, do
 
1680          * allow guests to use TSX_CTRL, but don't change the value in hardware
 
1681          * so that TSX remains always disabled.
 
1683         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
 
1685         if (cpu_has_vmx_msr_bitmap())
 
1686                 vmx_update_msr_bitmap(&vmx->vcpu);
 
1689          * The set of MSRs to load may have changed, reload MSRs before the
 
1692         vmx->guest_uret_msrs_loaded = false;
 
1695 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
 
1697         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 
1699         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
 
1700                 return vmcs12->tsc_offset;
 
1705 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
 
1707         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 
1709         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
 
1710             nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
 
1711                 return vmcs12->tsc_multiplier;
 
1713         return kvm_default_tsc_scaling_ratio;
 
1716 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
 
1718         vmcs_write64(TSC_OFFSET, offset);
 
1721 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
 
1723         vmcs_write64(TSC_MULTIPLIER, multiplier);
 
1727  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
 
1728  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
 
1729  * all guests if the "nested" module option is off, and can also be disabled
 
1730  * for a single guest by disabling its VMX cpuid bit.
 
1732 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
 
1734         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
 
1737 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
 
1740         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
 
1742         return !(val & ~valid_bits);
 
1745 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
 
1747         switch (msr->index) {
 
1748         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
 
1751                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
 
1752         case MSR_IA32_PERF_CAPABILITIES:
 
1753                 msr->data = vmx_get_perf_capabilities();
 
1756                 return KVM_MSR_RET_INVALID;
 
1761  * Reads an msr value (of 'msr_index') into 'pdata'.
 
1762  * Returns 0 on success, non-0 otherwise.
 
1763  * Assumes vcpu_load() was already called.
 
1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 
1767         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1768         struct vmx_uret_msr *msr;
 
1771         switch (msr_info->index) {
 
1772 #ifdef CONFIG_X86_64
 
1774                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
 
1777                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
 
1779         case MSR_KERNEL_GS_BASE:
 
1780                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
 
1784                 return kvm_get_msr_common(vcpu, msr_info);
 
1785         case MSR_IA32_TSX_CTRL:
 
1786                 if (!msr_info->host_initiated &&
 
1787                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
 
1790         case MSR_IA32_UMWAIT_CONTROL:
 
1791                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
 
1794                 msr_info->data = vmx->msr_ia32_umwait_control;
 
1796         case MSR_IA32_SPEC_CTRL:
 
1797                 if (!msr_info->host_initiated &&
 
1798                     !guest_has_spec_ctrl_msr(vcpu))
 
1801                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
 
1803         case MSR_IA32_SYSENTER_CS:
 
1804                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
 
1806         case MSR_IA32_SYSENTER_EIP:
 
1807                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
 
1809         case MSR_IA32_SYSENTER_ESP:
 
1810                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
 
1812         case MSR_IA32_BNDCFGS:
 
1813                 if (!kvm_mpx_supported() ||
 
1814                     (!msr_info->host_initiated &&
 
1815                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
 
1817                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
 
1819         case MSR_IA32_MCG_EXT_CTL:
 
1820                 if (!msr_info->host_initiated &&
 
1821                     !(vmx->msr_ia32_feature_control &
 
1822                       FEAT_CTL_LMCE_ENABLED))
 
1824                 msr_info->data = vcpu->arch.mcg_ext_ctl;
 
1826         case MSR_IA32_FEAT_CTL:
 
1827                 msr_info->data = vmx->msr_ia32_feature_control;
 
1829         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
 
1830                 if (!msr_info->host_initiated &&
 
1831                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
 
1833                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
 
1834                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
 
1836         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
 
1837                 if (!nested_vmx_allowed(vcpu))
 
1839                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
 
1843                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
 
1844                  * Hyper-V versions are still trying to use corresponding
 
1845                  * features when they are exposed. Filter out the essential
 
1848                 if (!msr_info->host_initiated &&
 
1849                     vmx->nested.enlightened_vmcs_enabled)
 
1850                         nested_evmcs_filter_control_msr(msr_info->index,
 
1853         case MSR_IA32_RTIT_CTL:
 
1854                 if (!vmx_pt_mode_is_host_guest())
 
1856                 msr_info->data = vmx->pt_desc.guest.ctl;
 
1858         case MSR_IA32_RTIT_STATUS:
 
1859                 if (!vmx_pt_mode_is_host_guest())
 
1861                 msr_info->data = vmx->pt_desc.guest.status;
 
1863         case MSR_IA32_RTIT_CR3_MATCH:
 
1864                 if (!vmx_pt_mode_is_host_guest() ||
 
1865                         !intel_pt_validate_cap(vmx->pt_desc.caps,
 
1866                                                 PT_CAP_cr3_filtering))
 
1868                 msr_info->data = vmx->pt_desc.guest.cr3_match;
 
1870         case MSR_IA32_RTIT_OUTPUT_BASE:
 
1871                 if (!vmx_pt_mode_is_host_guest() ||
 
1872                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
 
1873                                         PT_CAP_topa_output) &&
 
1874                          !intel_pt_validate_cap(vmx->pt_desc.caps,
 
1875                                         PT_CAP_single_range_output)))
 
1877                 msr_info->data = vmx->pt_desc.guest.output_base;
 
1879         case MSR_IA32_RTIT_OUTPUT_MASK:
 
1880                 if (!vmx_pt_mode_is_host_guest() ||
 
1881                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
 
1882                                         PT_CAP_topa_output) &&
 
1883                          !intel_pt_validate_cap(vmx->pt_desc.caps,
 
1884                                         PT_CAP_single_range_output)))
 
1886                 msr_info->data = vmx->pt_desc.guest.output_mask;
 
1888         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
 
1889                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
 
1890                 if (!vmx_pt_mode_is_host_guest() ||
 
1891                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
 
1892                                         PT_CAP_num_address_ranges)))
 
1895                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
 
1897                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
 
1899         case MSR_IA32_DEBUGCTLMSR:
 
1900                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
 
1904                 msr = vmx_find_uret_msr(vmx, msr_info->index);
 
1906                         msr_info->data = msr->data;
 
1909                 return kvm_get_msr_common(vcpu, msr_info);
 
1915 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
 
1918 #ifdef CONFIG_X86_64
 
1919         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
 
1922         return (unsigned long)data;
 
1925 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
 
1927         u64 debugctl = vmx_supported_debugctl();
 
1929         if (!intel_pmu_lbr_is_enabled(vcpu))
 
1930                 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
 
1932         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
 
1933                 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
 
1939  * Writes msr value into the appropriate "register".
 
1940  * Returns 0 on success, non-0 otherwise.
 
1941  * Assumes vcpu_load() was already called.
 
1943 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 
1945         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
1946         struct vmx_uret_msr *msr;
 
1948         u32 msr_index = msr_info->index;
 
1949         u64 data = msr_info->data;
 
1952         switch (msr_index) {
 
1954                 ret = kvm_set_msr_common(vcpu, msr_info);
 
1956 #ifdef CONFIG_X86_64
 
1958                 vmx_segment_cache_clear(vmx);
 
1959                 vmcs_writel(GUEST_FS_BASE, data);
 
1962                 vmx_segment_cache_clear(vmx);
 
1963                 vmcs_writel(GUEST_GS_BASE, data);
 
1965         case MSR_KERNEL_GS_BASE:
 
1966                 vmx_write_guest_kernel_gs_base(vmx, data);
 
1969         case MSR_IA32_SYSENTER_CS:
 
1970                 if (is_guest_mode(vcpu))
 
1971                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
 
1972                 vmcs_write32(GUEST_SYSENTER_CS, data);
 
1974         case MSR_IA32_SYSENTER_EIP:
 
1975                 if (is_guest_mode(vcpu)) {
 
1976                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
 
1977                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
 
1979                 vmcs_writel(GUEST_SYSENTER_EIP, data);
 
1981         case MSR_IA32_SYSENTER_ESP:
 
1982                 if (is_guest_mode(vcpu)) {
 
1983                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
 
1984                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
 
1986                 vmcs_writel(GUEST_SYSENTER_ESP, data);
 
1988         case MSR_IA32_DEBUGCTLMSR: {
 
1989                 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
 
1990                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
 
1991                         if (report_ignored_msrs)
 
1992                                 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
 
1994                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
 
1995                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
 
2001                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
 
2002                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
 
2003                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
 
2005                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
 
2006                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
 
2007                     (data & DEBUGCTLMSR_LBR))
 
2008                         intel_pmu_create_guest_lbr_event(vcpu);
 
2011         case MSR_IA32_BNDCFGS:
 
2012                 if (!kvm_mpx_supported() ||
 
2013                     (!msr_info->host_initiated &&
 
2014                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
 
2016                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
 
2017                     (data & MSR_IA32_BNDCFGS_RSVD))
 
2019                 vmcs_write64(GUEST_BNDCFGS, data);
 
2021         case MSR_IA32_UMWAIT_CONTROL:
 
2022                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
 
2025                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
 
2026                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
 
2029                 vmx->msr_ia32_umwait_control = data;
 
2031         case MSR_IA32_SPEC_CTRL:
 
2032                 if (!msr_info->host_initiated &&
 
2033                     !guest_has_spec_ctrl_msr(vcpu))
 
2036                 if (kvm_spec_ctrl_test_value(data))
 
2039                 vmx->spec_ctrl = data;
 
2045                  * When it's written (to non-zero) for the first time, pass
 
2049                  * The handling of the MSR bitmap for L2 guests is done in
 
2050                  * nested_vmx_prepare_msr_bitmap. We should not touch the
 
2051                  * vmcs02.msr_bitmap here since it gets completely overwritten
 
2052                  * in the merging. We update the vmcs01 here for L1 as well
 
2053                  * since it will end up touching the MSR anyway now.
 
2055                 vmx_disable_intercept_for_msr(vcpu,
 
2059         case MSR_IA32_TSX_CTRL:
 
2060                 if (!msr_info->host_initiated &&
 
2061                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
 
2063                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
 
2066         case MSR_IA32_PRED_CMD:
 
2067                 if (!msr_info->host_initiated &&
 
2068                     !guest_has_pred_cmd_msr(vcpu))
 
2071                 if (data & ~PRED_CMD_IBPB)
 
2073                 if (!boot_cpu_has(X86_FEATURE_IBPB))
 
2078                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
 
2082                  * When it's written (to non-zero) for the first time, pass
 
2086                  * The handling of the MSR bitmap for L2 guests is done in
 
2087                  * nested_vmx_prepare_msr_bitmap. We should not touch the
 
2088                  * vmcs02.msr_bitmap here since it gets completely overwritten
 
2091                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
 
2093         case MSR_IA32_CR_PAT:
 
2094                 if (!kvm_pat_valid(data))
 
2097                 if (is_guest_mode(vcpu) &&
 
2098                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
 
2099                         get_vmcs12(vcpu)->guest_ia32_pat = data;
 
2101                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
 
2102                         vmcs_write64(GUEST_IA32_PAT, data);
 
2103                         vcpu->arch.pat = data;
 
2106                 ret = kvm_set_msr_common(vcpu, msr_info);
 
2108         case MSR_IA32_TSC_ADJUST:
 
2109                 ret = kvm_set_msr_common(vcpu, msr_info);
 
2111         case MSR_IA32_MCG_EXT_CTL:
 
2112                 if ((!msr_info->host_initiated &&
 
2113                      !(to_vmx(vcpu)->msr_ia32_feature_control &
 
2114                        FEAT_CTL_LMCE_ENABLED)) ||
 
2115                     (data & ~MCG_EXT_CTL_LMCE_EN))
 
2117                 vcpu->arch.mcg_ext_ctl = data;
 
2119         case MSR_IA32_FEAT_CTL:
 
2120                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
 
2121                     (to_vmx(vcpu)->msr_ia32_feature_control &
 
2122                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
 
2124                 vmx->msr_ia32_feature_control = data;
 
2125                 if (msr_info->host_initiated && data == 0)
 
2126                         vmx_leave_nested(vcpu);
 
2128                 /* SGX may be enabled/disabled by guest's firmware */
 
2129                 vmx_write_encls_bitmap(vcpu, NULL);
 
2131         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
 
2133                  * On real hardware, the LE hash MSRs are writable before
 
2134                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
 
2135                  * at which point SGX related bits in IA32_FEATURE_CONTROL
 
2138                  * KVM does not emulate SGX activation for simplicity, so
 
2139                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
 
2140                  * is unlocked.  This is technically not architectural
 
2141                  * behavior, but it's close enough.
 
2143                 if (!msr_info->host_initiated &&
 
2144                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
 
2145                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
 
2146                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
 
2148                 vmx->msr_ia32_sgxlepubkeyhash
 
2149                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
 
2151         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
 
2152                 if (!msr_info->host_initiated)
 
2153                         return 1; /* they are read-only */
 
2154                 if (!nested_vmx_allowed(vcpu))
 
2156                 return vmx_set_vmx_msr(vcpu, msr_index, data);
 
2157         case MSR_IA32_RTIT_CTL:
 
2158                 if (!vmx_pt_mode_is_host_guest() ||
 
2159                         vmx_rtit_ctl_check(vcpu, data) ||
 
2162                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
 
2163                 vmx->pt_desc.guest.ctl = data;
 
2164                 pt_update_intercept_for_msr(vcpu);
 
2166         case MSR_IA32_RTIT_STATUS:
 
2167                 if (!pt_can_write_msr(vmx))
 
2169                 if (data & MSR_IA32_RTIT_STATUS_MASK)
 
2171                 vmx->pt_desc.guest.status = data;
 
2173         case MSR_IA32_RTIT_CR3_MATCH:
 
2174                 if (!pt_can_write_msr(vmx))
 
2176                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
 
2177                                            PT_CAP_cr3_filtering))
 
2179                 vmx->pt_desc.guest.cr3_match = data;
 
2181         case MSR_IA32_RTIT_OUTPUT_BASE:
 
2182                 if (!pt_can_write_msr(vmx))
 
2184                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
 
2185                                            PT_CAP_topa_output) &&
 
2186                     !intel_pt_validate_cap(vmx->pt_desc.caps,
 
2187                                            PT_CAP_single_range_output))
 
2189                 if (!pt_output_base_valid(vcpu, data))
 
2191                 vmx->pt_desc.guest.output_base = data;
 
2193         case MSR_IA32_RTIT_OUTPUT_MASK:
 
2194                 if (!pt_can_write_msr(vmx))
 
2196                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
 
2197                                            PT_CAP_topa_output) &&
 
2198                     !intel_pt_validate_cap(vmx->pt_desc.caps,
 
2199                                            PT_CAP_single_range_output))
 
2201                 vmx->pt_desc.guest.output_mask = data;
 
2203         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
 
2204                 if (!pt_can_write_msr(vmx))
 
2206                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
 
2207                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
 
2208                                                        PT_CAP_num_address_ranges))
 
2210                 if (is_noncanonical_address(data, vcpu))
 
2213                         vmx->pt_desc.guest.addr_b[index / 2] = data;
 
2215                         vmx->pt_desc.guest.addr_a[index / 2] = data;
 
2217         case MSR_IA32_PERF_CAPABILITIES:
 
2218                 if (data && !vcpu_to_pmu(vcpu)->version)
 
2220                 if (data & PMU_CAP_LBR_FMT) {
 
2221                         if ((data & PMU_CAP_LBR_FMT) !=
 
2222                             (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
 
2224                         if (!intel_pmu_lbr_is_compatible(vcpu))
 
2227                 ret = kvm_set_msr_common(vcpu, msr_info);
 
2232                 msr = vmx_find_uret_msr(vmx, msr_index);
 
2234                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
 
2236                         ret = kvm_set_msr_common(vcpu, msr_info);
 
2242 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
 
2244         unsigned long guest_owned_bits;
 
2246         kvm_register_mark_available(vcpu, reg);
 
2250                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
 
2253                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
 
2255         case VCPU_EXREG_PDPTR:
 
2257                         ept_save_pdptrs(vcpu);
 
2259         case VCPU_EXREG_CR0:
 
2260                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
 
2262                 vcpu->arch.cr0 &= ~guest_owned_bits;
 
2263                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
 
2265         case VCPU_EXREG_CR3:
 
2266                 if (is_unrestricted_guest(vcpu) ||
 
2267                     (enable_ept && is_paging(vcpu)))
 
2268                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
 
2270         case VCPU_EXREG_CR4:
 
2271                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
 
2273                 vcpu->arch.cr4 &= ~guest_owned_bits;
 
2274                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
 
2277                 KVM_BUG_ON(1, vcpu->kvm);
 
2282 static __init int cpu_has_kvm_support(void)
 
2284         return cpu_has_vmx();
 
2287 static __init int vmx_disabled_by_bios(void)
 
2289         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
 
2290                !boot_cpu_has(X86_FEATURE_VMX);
 
2293 static int kvm_cpu_vmxon(u64 vmxon_pointer)
 
2297         cr4_set_bits(X86_CR4_VMXE);
 
2299         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
 
2300                           _ASM_EXTABLE(1b, %l[fault])
 
2301                           : : [vmxon_pointer] "m"(vmxon_pointer)
 
2306         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
 
2307                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
 
2308         cr4_clear_bits(X86_CR4_VMXE);
 
2313 static int hardware_enable(void)
 
2315         int cpu = raw_smp_processor_id();
 
2316         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
 
2319         if (cr4_read_shadow() & X86_CR4_VMXE)
 
2323          * This can happen if we hot-added a CPU but failed to allocate
 
2324          * VP assist page for it.
 
2326         if (static_branch_unlikely(&enable_evmcs) &&
 
2327             !hv_get_vp_assist_page(cpu))
 
2330         intel_pt_handle_vmx(1);
 
2332         r = kvm_cpu_vmxon(phys_addr);
 
2334                 intel_pt_handle_vmx(0);
 
2344 static void vmclear_local_loaded_vmcss(void)
 
2346         int cpu = raw_smp_processor_id();
 
2347         struct loaded_vmcs *v, *n;
 
2349         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
 
2350                                  loaded_vmcss_on_cpu_link)
 
2351                 __loaded_vmcs_clear(v);
 
2354 static void hardware_disable(void)
 
2356         vmclear_local_loaded_vmcss();
 
2359                 kvm_spurious_fault();
 
2361         intel_pt_handle_vmx(0);
 
2365  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
 
2366  * directly instead of going through cpu_has(), to ensure KVM is trapping
 
2367  * ENCLS whenever it's supported in hardware.  It does not matter whether
 
2368  * the host OS supports or has enabled SGX.
 
2370 static bool cpu_has_sgx(void)
 
2372         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
 
2375 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
 
2376                                       u32 msr, u32 *result)
 
2378         u32 vmx_msr_low, vmx_msr_high;
 
2379         u32 ctl = ctl_min | ctl_opt;
 
2381         rdmsr(msr, vmx_msr_low, vmx_msr_high);
 
2383         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
 
2384         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
 
2386         /* Ensure minimum (required) set of control bits are supported. */
 
2394 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
 
2395                                     struct vmx_capability *vmx_cap)
 
2397         u32 vmx_msr_low, vmx_msr_high;
 
2398         u32 min, opt, min2, opt2;
 
2399         u32 _pin_based_exec_control = 0;
 
2400         u32 _cpu_based_exec_control = 0;
 
2401         u32 _cpu_based_2nd_exec_control = 0;
 
2402         u32 _vmexit_control = 0;
 
2403         u32 _vmentry_control = 0;
 
2405         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
 
2406         min = CPU_BASED_HLT_EXITING |
 
2407 #ifdef CONFIG_X86_64
 
2408               CPU_BASED_CR8_LOAD_EXITING |
 
2409               CPU_BASED_CR8_STORE_EXITING |
 
2411               CPU_BASED_CR3_LOAD_EXITING |
 
2412               CPU_BASED_CR3_STORE_EXITING |
 
2413               CPU_BASED_UNCOND_IO_EXITING |
 
2414               CPU_BASED_MOV_DR_EXITING |
 
2415               CPU_BASED_USE_TSC_OFFSETTING |
 
2416               CPU_BASED_MWAIT_EXITING |
 
2417               CPU_BASED_MONITOR_EXITING |
 
2418               CPU_BASED_INVLPG_EXITING |
 
2419               CPU_BASED_RDPMC_EXITING;
 
2421         opt = CPU_BASED_TPR_SHADOW |
 
2422               CPU_BASED_USE_MSR_BITMAPS |
 
2423               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 
2424         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
 
2425                                 &_cpu_based_exec_control) < 0)
 
2427 #ifdef CONFIG_X86_64
 
2428         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
 
2429                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
 
2430                                            ~CPU_BASED_CR8_STORE_EXITING;
 
2432         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
 
2434                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
 
2435                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
 
2436                         SECONDARY_EXEC_WBINVD_EXITING |
 
2437                         SECONDARY_EXEC_ENABLE_VPID |
 
2438                         SECONDARY_EXEC_ENABLE_EPT |
 
2439                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
 
2440                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
 
2441                         SECONDARY_EXEC_DESC |
 
2442                         SECONDARY_EXEC_ENABLE_RDTSCP |
 
2443                         SECONDARY_EXEC_ENABLE_INVPCID |
 
2444                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
 
2445                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
 
2446                         SECONDARY_EXEC_SHADOW_VMCS |
 
2447                         SECONDARY_EXEC_XSAVES |
 
2448                         SECONDARY_EXEC_RDSEED_EXITING |
 
2449                         SECONDARY_EXEC_RDRAND_EXITING |
 
2450                         SECONDARY_EXEC_ENABLE_PML |
 
2451                         SECONDARY_EXEC_TSC_SCALING |
 
2452                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
 
2453                         SECONDARY_EXEC_PT_USE_GPA |
 
2454                         SECONDARY_EXEC_PT_CONCEAL_VMX |
 
2455                         SECONDARY_EXEC_ENABLE_VMFUNC |
 
2456                         SECONDARY_EXEC_BUS_LOCK_DETECTION;
 
2458                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
 
2459                 if (adjust_vmx_controls(min2, opt2,
 
2460                                         MSR_IA32_VMX_PROCBASED_CTLS2,
 
2461                                         &_cpu_based_2nd_exec_control) < 0)
 
2464 #ifndef CONFIG_X86_64
 
2465         if (!(_cpu_based_2nd_exec_control &
 
2466                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
 
2467                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
 
2470         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
 
2471                 _cpu_based_2nd_exec_control &= ~(
 
2472                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
 
2473                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
 
2474                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
 
2476         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
 
2477                 &vmx_cap->ept, &vmx_cap->vpid);
 
2479         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
 
2480                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
 
2482                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
 
2483                                              CPU_BASED_CR3_STORE_EXITING |
 
2484                                              CPU_BASED_INVLPG_EXITING);
 
2485         } else if (vmx_cap->ept) {
 
2487                 pr_warn_once("EPT CAP should not exist if not support "
 
2488                                 "1-setting enable EPT VM-execution control\n");
 
2490         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
 
2493                 pr_warn_once("VPID CAP should not exist if not support "
 
2494                                 "1-setting enable VPID VM-execution control\n");
 
2497         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
 
2498 #ifdef CONFIG_X86_64
 
2499         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
 
2501         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
 
2502               VM_EXIT_LOAD_IA32_PAT |
 
2503               VM_EXIT_LOAD_IA32_EFER |
 
2504               VM_EXIT_CLEAR_BNDCFGS |
 
2505               VM_EXIT_PT_CONCEAL_PIP |
 
2506               VM_EXIT_CLEAR_IA32_RTIT_CTL;
 
2507         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
 
2508                                 &_vmexit_control) < 0)
 
2511         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
 
2512         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
 
2513                  PIN_BASED_VMX_PREEMPTION_TIMER;
 
2514         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
 
2515                                 &_pin_based_exec_control) < 0)
 
2518         if (cpu_has_broken_vmx_preemption_timer())
 
2519                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
 
2520         if (!(_cpu_based_2nd_exec_control &
 
2521                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
 
2522                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
 
2524         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
 
2525         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
 
2526               VM_ENTRY_LOAD_IA32_PAT |
 
2527               VM_ENTRY_LOAD_IA32_EFER |
 
2528               VM_ENTRY_LOAD_BNDCFGS |
 
2529               VM_ENTRY_PT_CONCEAL_PIP |
 
2530               VM_ENTRY_LOAD_IA32_RTIT_CTL;
 
2531         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
 
2532                                 &_vmentry_control) < 0)
 
2536          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
 
2537          * can't be used due to an errata where VM Exit may incorrectly clear
 
2538          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
 
2539          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
 
2541         if (boot_cpu_data.x86 == 0x6) {
 
2542                 switch (boot_cpu_data.x86_model) {
 
2543                 case 26: /* AAK155 */
 
2544                 case 30: /* AAP115 */
 
2545                 case 37: /* AAT100 */
 
2546                 case 44: /* BC86,AAY89,BD102 */
 
2548                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
 
2549                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
 
2550                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
 
2551                                         "does not work properly. Using workaround\n");
 
2559         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
 
2561         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
 
2562         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
 
2565 #ifdef CONFIG_X86_64
 
2566         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
 
2567         if (vmx_msr_high & (1u<<16))
 
2571         /* Require Write-Back (WB) memory type for VMCS accesses. */
 
2572         if (((vmx_msr_high >> 18) & 15) != 6)
 
2575         vmcs_conf->size = vmx_msr_high & 0x1fff;
 
2576         vmcs_conf->order = get_order(vmcs_conf->size);
 
2577         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
 
2579         vmcs_conf->revision_id = vmx_msr_low;
 
2581         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
 
2582         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
 
2583         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
 
2584         vmcs_conf->vmexit_ctrl         = _vmexit_control;
 
2585         vmcs_conf->vmentry_ctrl        = _vmentry_control;
 
2587 #if IS_ENABLED(CONFIG_HYPERV)
 
2588         if (enlightened_vmcs)
 
2589                 evmcs_sanitize_exec_ctrls(vmcs_conf);
 
2595 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
 
2597         int node = cpu_to_node(cpu);
 
2601         pages = __alloc_pages_node(node, flags, vmcs_config.order);
 
2604         vmcs = page_address(pages);
 
2605         memset(vmcs, 0, vmcs_config.size);
 
2607         /* KVM supports Enlightened VMCS v1 only */
 
2608         if (static_branch_unlikely(&enable_evmcs))
 
2609                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
 
2611                 vmcs->hdr.revision_id = vmcs_config.revision_id;
 
2614                 vmcs->hdr.shadow_vmcs = 1;
 
2618 void free_vmcs(struct vmcs *vmcs)
 
2620         free_pages((unsigned long)vmcs, vmcs_config.order);
 
2624  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
 
2626 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
 
2628         if (!loaded_vmcs->vmcs)
 
2630         loaded_vmcs_clear(loaded_vmcs);
 
2631         free_vmcs(loaded_vmcs->vmcs);
 
2632         loaded_vmcs->vmcs = NULL;
 
2633         if (loaded_vmcs->msr_bitmap)
 
2634                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
 
2635         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
 
2638 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
 
2640         loaded_vmcs->vmcs = alloc_vmcs(false);
 
2641         if (!loaded_vmcs->vmcs)
 
2644         vmcs_clear(loaded_vmcs->vmcs);
 
2646         loaded_vmcs->shadow_vmcs = NULL;
 
2647         loaded_vmcs->hv_timer_soft_disabled = false;
 
2648         loaded_vmcs->cpu = -1;
 
2649         loaded_vmcs->launched = 0;
 
2651         if (cpu_has_vmx_msr_bitmap()) {
 
2652                 loaded_vmcs->msr_bitmap = (unsigned long *)
 
2653                                 __get_free_page(GFP_KERNEL_ACCOUNT);
 
2654                 if (!loaded_vmcs->msr_bitmap)
 
2656                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
 
2658                 if (IS_ENABLED(CONFIG_HYPERV) &&
 
2659                     static_branch_unlikely(&enable_evmcs) &&
 
2660                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
 
2661                         struct hv_enlightened_vmcs *evmcs =
 
2662                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
 
2664                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
 
2668         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
 
2669         memset(&loaded_vmcs->controls_shadow, 0,
 
2670                 sizeof(struct vmcs_controls_shadow));
 
2675         free_loaded_vmcs(loaded_vmcs);
 
2679 static void free_kvm_area(void)
 
2683         for_each_possible_cpu(cpu) {
 
2684                 free_vmcs(per_cpu(vmxarea, cpu));
 
2685                 per_cpu(vmxarea, cpu) = NULL;
 
2689 static __init int alloc_kvm_area(void)
 
2693         for_each_possible_cpu(cpu) {
 
2696                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
 
2703                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
 
2704                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
 
2705                  * revision_id reported by MSR_IA32_VMX_BASIC.
 
2707                  * However, even though not explicitly documented by
 
2708                  * TLFS, VMXArea passed as VMXON argument should
 
2709                  * still be marked with revision_id reported by
 
2712                 if (static_branch_unlikely(&enable_evmcs))
 
2713                         vmcs->hdr.revision_id = vmcs_config.revision_id;
 
2715                 per_cpu(vmxarea, cpu) = vmcs;
 
2720 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
 
2721                 struct kvm_segment *save)
 
2723         if (!emulate_invalid_guest_state) {
 
2725                  * CS and SS RPL should be equal during guest entry according
 
2726                  * to VMX spec, but in reality it is not always so. Since vcpu
 
2727                  * is in the middle of the transition from real mode to
 
2728                  * protected mode it is safe to assume that RPL 0 is a good
 
2731                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
 
2732                         save->selector &= ~SEGMENT_RPL_MASK;
 
2733                 save->dpl = save->selector & SEGMENT_RPL_MASK;
 
2736         vmx_set_segment(vcpu, save, seg);
 
2739 static void enter_pmode(struct kvm_vcpu *vcpu)
 
2741         unsigned long flags;
 
2742         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
2745          * Update real mode segment cache. It may be not up-to-date if segment
 
2746          * register was written while vcpu was in a guest mode.
 
2748         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
 
2749         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
 
2750         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
 
2751         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
 
2752         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
 
2753         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
 
2755         vmx->rmode.vm86_active = 0;
 
2757         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
 
2759         flags = vmcs_readl(GUEST_RFLAGS);
 
2760         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
 
2761         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
 
2762         vmcs_writel(GUEST_RFLAGS, flags);
 
2764         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
 
2765                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
 
2767         vmx_update_exception_bitmap(vcpu);
 
2769         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
 
2770         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
 
2771         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
 
2772         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
 
2773         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
 
2774         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
 
2777 static void fix_rmode_seg(int seg, struct kvm_segment *save)
 
2779         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 
2780         struct kvm_segment var = *save;
 
2783         if (seg == VCPU_SREG_CS)
 
2786         if (!emulate_invalid_guest_state) {
 
2787                 var.selector = var.base >> 4;
 
2788                 var.base = var.base & 0xffff0;
 
2798                 if (save->base & 0xf)
 
2799                         printk_once(KERN_WARNING "kvm: segment base is not "
 
2800                                         "paragraph aligned when entering "
 
2801                                         "protected mode (seg=%d)", seg);
 
2804         vmcs_write16(sf->selector, var.selector);
 
2805         vmcs_writel(sf->base, var.base);
 
2806         vmcs_write32(sf->limit, var.limit);
 
2807         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
 
2810 static void enter_rmode(struct kvm_vcpu *vcpu)
 
2812         unsigned long flags;
 
2813         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
2814         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
 
2816         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
 
2817         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
 
2818         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
 
2819         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
 
2820         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
 
2821         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
 
2822         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
 
2824         vmx->rmode.vm86_active = 1;
 
2827          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
 
2828          * vcpu. Warn the user that an update is overdue.
 
2830         if (!kvm_vmx->tss_addr)
 
2831                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
 
2832                              "called before entering vcpu\n");
 
2834         vmx_segment_cache_clear(vmx);
 
2836         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
 
2837         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
 
2838         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
 
2840         flags = vmcs_readl(GUEST_RFLAGS);
 
2841         vmx->rmode.save_rflags = flags;
 
2843         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
 
2845         vmcs_writel(GUEST_RFLAGS, flags);
 
2846         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
 
2847         vmx_update_exception_bitmap(vcpu);
 
2849         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
 
2850         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
 
2851         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
 
2852         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
 
2853         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
 
2854         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
 
2857 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 
2859         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
2860         struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
 
2862         /* Nothing to do if hardware doesn't support EFER. */
 
2866         vcpu->arch.efer = efer;
 
2867         if (efer & EFER_LMA) {
 
2868                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
 
2871                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
 
2873                 msr->data = efer & ~EFER_LME;
 
2879 #ifdef CONFIG_X86_64
 
2881 static void enter_lmode(struct kvm_vcpu *vcpu)
 
2885         vmx_segment_cache_clear(to_vmx(vcpu));
 
2887         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
 
2888         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
 
2889                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
 
2891                 vmcs_write32(GUEST_TR_AR_BYTES,
 
2892                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
 
2893                              | VMX_AR_TYPE_BUSY_64_TSS);
 
2895         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
 
2898 static void exit_lmode(struct kvm_vcpu *vcpu)
 
2900         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
 
2901         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
 
2906 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
 
2908         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
2911          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
 
2912          * the CPU is not required to invalidate guest-physical mappings on
 
2913          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
 
2914          * associated with the root EPT structure and not any particular VPID
 
2915          * (INVVPID also isn't required to invalidate guest-physical mappings).
 
2919         } else if (enable_vpid) {
 
2920                 if (cpu_has_vmx_invvpid_global()) {
 
2921                         vpid_sync_vcpu_global();
 
2923                         vpid_sync_vcpu_single(vmx->vpid);
 
2924                         vpid_sync_vcpu_single(vmx->nested.vpid02);
 
2929 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
 
2931         struct kvm_mmu *mmu = vcpu->arch.mmu;
 
2932         u64 root_hpa = mmu->root_hpa;
 
2934         /* No flush required if the current context is invalid. */
 
2935         if (!VALID_PAGE(root_hpa))
 
2939                 ept_sync_context(construct_eptp(vcpu, root_hpa,
 
2940                                                 mmu->shadow_root_level));
 
2941         else if (!is_guest_mode(vcpu))
 
2942                 vpid_sync_context(to_vmx(vcpu)->vpid);
 
2944                 vpid_sync_context(nested_get_vpid02(vcpu));
 
2947 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
 
2950          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
 
2951          * vmx_flush_tlb_guest() for an explanation of why this is ok.
 
2953         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
 
2956 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
 
2959          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
 
2960          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
 
2961          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
 
2962          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
 
2963          * i.e. no explicit INVVPID is necessary.
 
2965         vpid_sync_context(to_vmx(vcpu)->vpid);
 
2968 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
 
2970         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 
2972         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
 
2975         if (is_pae_paging(vcpu)) {
 
2976                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
 
2977                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
 
2978                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
 
2979                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
 
2983 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
 
2985         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 
2987         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
 
2990         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
 
2991         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
 
2992         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
 
2993         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
 
2995         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
 
2998 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
 
3000                                         struct kvm_vcpu *vcpu)
 
3002         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3004         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
 
3005                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
 
3006         if (!(cr0 & X86_CR0_PG)) {
 
3007                 /* From paging/starting to nonpaging */
 
3008                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
 
3009                                           CPU_BASED_CR3_STORE_EXITING);
 
3010                 vcpu->arch.cr0 = cr0;
 
3011                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
 
3012         } else if (!is_paging(vcpu)) {
 
3013                 /* From nonpaging to paging */
 
3014                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
 
3015                                             CPU_BASED_CR3_STORE_EXITING);
 
3016                 vcpu->arch.cr0 = cr0;
 
3017                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
 
3020         if (!(cr0 & X86_CR0_WP))
 
3021                 *hw_cr0 &= ~X86_CR0_WP;
 
3024 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 
3026         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3027         unsigned long hw_cr0;
 
3029         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
 
3030         if (is_unrestricted_guest(vcpu))
 
3031                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
 
3033                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
 
3035                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
 
3038                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
 
3042 #ifdef CONFIG_X86_64
 
3043         if (vcpu->arch.efer & EFER_LME) {
 
3044                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
 
3046                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
 
3051         if (enable_ept && !is_unrestricted_guest(vcpu))
 
3052                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
 
3054         vmcs_writel(CR0_READ_SHADOW, cr0);
 
3055         vmcs_writel(GUEST_CR0, hw_cr0);
 
3056         vcpu->arch.cr0 = cr0;
 
3057         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
 
3059         /* depends on vcpu->arch.cr0 to be set to a new value */
 
3060         vmx->emulation_required = emulation_required(vcpu);
 
3063 static int vmx_get_max_tdp_level(void)
 
3065         if (cpu_has_vmx_ept_5levels())
 
3070 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
 
3072         u64 eptp = VMX_EPTP_MT_WB;
 
3074         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
 
3076         if (enable_ept_ad_bits &&
 
3077             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
 
3078                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
 
3084 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
 
3087         struct kvm *kvm = vcpu->kvm;
 
3088         bool update_guest_cr3 = true;
 
3089         unsigned long guest_cr3;
 
3093                 eptp = construct_eptp(vcpu, root_hpa, root_level);
 
3094                 vmcs_write64(EPT_POINTER, eptp);
 
3096                 hv_track_root_tdp(vcpu, root_hpa);
 
3098                 if (!enable_unrestricted_guest && !is_paging(vcpu))
 
3099                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
 
3100                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
 
3101                         guest_cr3 = vcpu->arch.cr3;
 
3102                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
 
3103                         update_guest_cr3 = false;
 
3104                 vmx_ept_load_pdptrs(vcpu);
 
3106                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
 
3109         if (update_guest_cr3)
 
3110                 vmcs_writel(GUEST_CR3, guest_cr3);
 
3113 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 
3116          * We operate under the default treatment of SMM, so VMX cannot be
 
3117          * enabled under SMM.  Note, whether or not VMXE is allowed at all is
 
3118          * handled by kvm_is_valid_cr4().
 
3120         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
 
3123         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
 
3129 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 
3131         unsigned long old_cr4 = vcpu->arch.cr4;
 
3132         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3134          * Pass through host's Machine Check Enable value to hw_cr4, which
 
3135          * is in force while we are in guest mode.  Do not let guests control
 
3136          * this bit, even if host CR4.MCE == 0.
 
3138         unsigned long hw_cr4;
 
3140         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
 
3141         if (is_unrestricted_guest(vcpu))
 
3142                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
 
3143         else if (vmx->rmode.vm86_active)
 
3144                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
 
3146                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
 
3148         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
 
3149                 if (cr4 & X86_CR4_UMIP) {
 
3150                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
 
3151                         hw_cr4 &= ~X86_CR4_UMIP;
 
3152                 } else if (!is_guest_mode(vcpu) ||
 
3153                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
 
3154                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
 
3158         vcpu->arch.cr4 = cr4;
 
3159         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
 
3161         if (!is_unrestricted_guest(vcpu)) {
 
3163                         if (!is_paging(vcpu)) {
 
3164                                 hw_cr4 &= ~X86_CR4_PAE;
 
3165                                 hw_cr4 |= X86_CR4_PSE;
 
3166                         } else if (!(cr4 & X86_CR4_PAE)) {
 
3167                                 hw_cr4 &= ~X86_CR4_PAE;
 
3172                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
 
3173                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
 
3174                  * to be manually disabled when guest switches to non-paging
 
3177                  * If !enable_unrestricted_guest, the CPU is always running
 
3178                  * with CR0.PG=1 and CR4 needs to be modified.
 
3179                  * If enable_unrestricted_guest, the CPU automatically
 
3180                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
 
3182                 if (!is_paging(vcpu))
 
3183                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
 
3186         vmcs_writel(CR4_READ_SHADOW, cr4);
 
3187         vmcs_writel(GUEST_CR4, hw_cr4);
 
3189         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
 
3190                 kvm_update_cpuid_runtime(vcpu);
 
3193 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
 
3195         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3198         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
 
3199                 *var = vmx->rmode.segs[seg];
 
3200                 if (seg == VCPU_SREG_TR
 
3201                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
 
3203                 var->base = vmx_read_guest_seg_base(vmx, seg);
 
3204                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
 
3207         var->base = vmx_read_guest_seg_base(vmx, seg);
 
3208         var->limit = vmx_read_guest_seg_limit(vmx, seg);
 
3209         var->selector = vmx_read_guest_seg_selector(vmx, seg);
 
3210         ar = vmx_read_guest_seg_ar(vmx, seg);
 
3211         var->unusable = (ar >> 16) & 1;
 
3212         var->type = ar & 15;
 
3213         var->s = (ar >> 4) & 1;
 
3214         var->dpl = (ar >> 5) & 3;
 
3216          * Some userspaces do not preserve unusable property. Since usable
 
3217          * segment has to be present according to VMX spec we can use present
 
3218          * property to amend userspace bug by making unusable segment always
 
3219          * nonpresent. vmx_segment_access_rights() already marks nonpresent
 
3220          * segment as unusable.
 
3222         var->present = !var->unusable;
 
3223         var->avl = (ar >> 12) & 1;
 
3224         var->l = (ar >> 13) & 1;
 
3225         var->db = (ar >> 14) & 1;
 
3226         var->g = (ar >> 15) & 1;
 
3229 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
 
3231         struct kvm_segment s;
 
3233         if (to_vmx(vcpu)->rmode.vm86_active) {
 
3234                 vmx_get_segment(vcpu, &s, seg);
 
3237         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
 
3240 int vmx_get_cpl(struct kvm_vcpu *vcpu)
 
3242         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3244         if (unlikely(vmx->rmode.vm86_active))
 
3247                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
 
3248                 return VMX_AR_DPL(ar);
 
3252 static u32 vmx_segment_access_rights(struct kvm_segment *var)
 
3256         if (var->unusable || !var->present)
 
3259                 ar = var->type & 15;
 
3260                 ar |= (var->s & 1) << 4;
 
3261                 ar |= (var->dpl & 3) << 5;
 
3262                 ar |= (var->present & 1) << 7;
 
3263                 ar |= (var->avl & 1) << 12;
 
3264                 ar |= (var->l & 1) << 13;
 
3265                 ar |= (var->db & 1) << 14;
 
3266                 ar |= (var->g & 1) << 15;
 
3272 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
 
3274         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3275         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 
3277         vmx_segment_cache_clear(vmx);
 
3279         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
 
3280                 vmx->rmode.segs[seg] = *var;
 
3281                 if (seg == VCPU_SREG_TR)
 
3282                         vmcs_write16(sf->selector, var->selector);
 
3284                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
 
3288         vmcs_writel(sf->base, var->base);
 
3289         vmcs_write32(sf->limit, var->limit);
 
3290         vmcs_write16(sf->selector, var->selector);
 
3293          *   Fix the "Accessed" bit in AR field of segment registers for older
 
3295          *   IA32 arch specifies that at the time of processor reset the
 
3296          * "Accessed" bit in the AR field of segment registers is 1. And qemu
 
3297          * is setting it to 0 in the userland code. This causes invalid guest
 
3298          * state vmexit when "unrestricted guest" mode is turned on.
 
3299          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
 
3300          * tree. Newer qemu binaries with that qemu fix would not need this
 
3303         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
 
3304                 var->type |= 0x1; /* Accessed */
 
3306         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
 
3309         vmx->emulation_required = emulation_required(vcpu);
 
3312 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
 
3314         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
 
3316         *db = (ar >> 14) & 1;
 
3317         *l = (ar >> 13) & 1;
 
3320 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 
3322         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
 
3323         dt->address = vmcs_readl(GUEST_IDTR_BASE);
 
3326 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 
3328         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
 
3329         vmcs_writel(GUEST_IDTR_BASE, dt->address);
 
3332 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 
3334         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
 
3335         dt->address = vmcs_readl(GUEST_GDTR_BASE);
 
3338 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 
3340         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
 
3341         vmcs_writel(GUEST_GDTR_BASE, dt->address);
 
3344 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
 
3346         struct kvm_segment var;
 
3349         vmx_get_segment(vcpu, &var, seg);
 
3351         if (seg == VCPU_SREG_CS)
 
3353         ar = vmx_segment_access_rights(&var);
 
3355         if (var.base != (var.selector << 4))
 
3357         if (var.limit != 0xffff)
 
3365 static bool code_segment_valid(struct kvm_vcpu *vcpu)
 
3367         struct kvm_segment cs;
 
3368         unsigned int cs_rpl;
 
3370         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
 
3371         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
 
3375         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
 
3379         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
 
3380                 if (cs.dpl > cs_rpl)
 
3383                 if (cs.dpl != cs_rpl)
 
3389         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
 
3393 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
 
3395         struct kvm_segment ss;
 
3396         unsigned int ss_rpl;
 
3398         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
 
3399         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
 
3403         if (ss.type != 3 && ss.type != 7)
 
3407         if (ss.dpl != ss_rpl) /* DPL != RPL */
 
3415 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
 
3417         struct kvm_segment var;
 
3420         vmx_get_segment(vcpu, &var, seg);
 
3421         rpl = var.selector & SEGMENT_RPL_MASK;
 
3429         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
 
3430                 if (var.dpl < rpl) /* DPL < RPL */
 
3434         /* TODO: Add other members to kvm_segment_field to allow checking for other access
 
3440 static bool tr_valid(struct kvm_vcpu *vcpu)
 
3442         struct kvm_segment tr;
 
3444         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
 
3448         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
 
3450         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
 
3458 static bool ldtr_valid(struct kvm_vcpu *vcpu)
 
3460         struct kvm_segment ldtr;
 
3462         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
 
3466         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
 
3476 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
 
3478         struct kvm_segment cs, ss;
 
3480         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
 
3481         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
 
3483         return ((cs.selector & SEGMENT_RPL_MASK) ==
 
3484                  (ss.selector & SEGMENT_RPL_MASK));
 
3488  * Check if guest state is valid. Returns true if valid, false if
 
3490  * We assume that registers are always usable
 
3492 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
 
3494         /* real mode guest state checks */
 
3495         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
 
3496                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
 
3498                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
 
3500                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
 
3502                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
 
3504                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
 
3506                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
 
3509         /* protected mode guest state checks */
 
3510                 if (!cs_ss_rpl_check(vcpu))
 
3512                 if (!code_segment_valid(vcpu))
 
3514                 if (!stack_segment_valid(vcpu))
 
3516                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
 
3518                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
 
3520                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
 
3522                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
 
3524                 if (!tr_valid(vcpu))
 
3526                 if (!ldtr_valid(vcpu))
 
3530          * - Add checks on RIP
 
3531          * - Add checks on RFLAGS
 
3537 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
 
3539         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
 
3543         for (i = 0; i < 3; i++) {
 
3544                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
 
3548         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
 
3549         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
 
3553         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
 
3559 static int init_rmode_identity_map(struct kvm *kvm)
 
3561         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
 
3566         /* Protect kvm_vmx->ept_identity_pagetable_done. */
 
3567         mutex_lock(&kvm->slots_lock);
 
3569         if (likely(kvm_vmx->ept_identity_pagetable_done))
 
3572         if (!kvm_vmx->ept_identity_map_addr)
 
3573                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
 
3575         uaddr = __x86_set_memory_region(kvm,
 
3576                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
 
3577                                         kvm_vmx->ept_identity_map_addr,
 
3579         if (IS_ERR(uaddr)) {
 
3584         /* Set up identity-mapping pagetable for EPT in real mode */
 
3585         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
 
3586                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
 
3587                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
 
3588                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
 
3593         kvm_vmx->ept_identity_pagetable_done = true;
 
3596         mutex_unlock(&kvm->slots_lock);
 
3600 static void seg_setup(int seg)
 
3602         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 
3605         vmcs_write16(sf->selector, 0);
 
3606         vmcs_writel(sf->base, 0);
 
3607         vmcs_write32(sf->limit, 0xffff);
 
3609         if (seg == VCPU_SREG_CS)
 
3610                 ar |= 0x08; /* code segment */
 
3612         vmcs_write32(sf->ar_bytes, ar);
 
3615 static int alloc_apic_access_page(struct kvm *kvm)
 
3621         mutex_lock(&kvm->slots_lock);
 
3622         if (kvm->arch.apic_access_memslot_enabled)
 
3624         hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
 
3625                                       APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
 
3631         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
 
3632         if (is_error_page(page)) {
 
3638          * Do not pin the page in memory, so that memory hot-unplug
 
3639          * is able to migrate it.
 
3642         kvm->arch.apic_access_memslot_enabled = true;
 
3644         mutex_unlock(&kvm->slots_lock);
 
3648 int allocate_vpid(void)
 
3654         spin_lock(&vmx_vpid_lock);
 
3655         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
 
3656         if (vpid < VMX_NR_VPIDS)
 
3657                 __set_bit(vpid, vmx_vpid_bitmap);
 
3660         spin_unlock(&vmx_vpid_lock);
 
3664 void free_vpid(int vpid)
 
3666         if (!enable_vpid || vpid == 0)
 
3668         spin_lock(&vmx_vpid_lock);
 
3669         __clear_bit(vpid, vmx_vpid_bitmap);
 
3670         spin_unlock(&vmx_vpid_lock);
 
3673 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
 
3675         int f = sizeof(unsigned long);
 
3678                 __clear_bit(msr, msr_bitmap + 0x000 / f);
 
3679         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
 
3680                 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
 
3683 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
 
3685         int f = sizeof(unsigned long);
 
3688                 __clear_bit(msr, msr_bitmap + 0x800 / f);
 
3689         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
 
3690                 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
 
3693 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
 
3695         int f = sizeof(unsigned long);
 
3698                 __set_bit(msr, msr_bitmap + 0x000 / f);
 
3699         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
 
3700                 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
 
3703 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
 
3705         int f = sizeof(unsigned long);
 
3708                 __set_bit(msr, msr_bitmap + 0x800 / f);
 
3709         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
 
3710                 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
 
3713 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
 
3715         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3716         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
 
3718         if (!cpu_has_vmx_msr_bitmap())
 
3721         if (static_branch_unlikely(&enable_evmcs))
 
3722                 evmcs_touch_msr_bitmap();
 
3725          * Mark the desired intercept state in shadow bitmap, this is needed
 
3726          * for resync when the MSR filters change.
 
3728         if (is_valid_passthrough_msr(msr)) {
 
3729                 int idx = possible_passthrough_msr_slot(msr);
 
3731                 if (idx != -ENOENT) {
 
3732                         if (type & MSR_TYPE_R)
 
3733                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
 
3734                         if (type & MSR_TYPE_W)
 
3735                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
 
3739         if ((type & MSR_TYPE_R) &&
 
3740             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
 
3741                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
 
3742                 type &= ~MSR_TYPE_R;
 
3745         if ((type & MSR_TYPE_W) &&
 
3746             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
 
3747                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
 
3748                 type &= ~MSR_TYPE_W;
 
3751         if (type & MSR_TYPE_R)
 
3752                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
 
3754         if (type & MSR_TYPE_W)
 
3755                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
 
3758 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
 
3760         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3761         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
 
3763         if (!cpu_has_vmx_msr_bitmap())
 
3766         if (static_branch_unlikely(&enable_evmcs))
 
3767                 evmcs_touch_msr_bitmap();
 
3770          * Mark the desired intercept state in shadow bitmap, this is needed
 
3771          * for resync when the MSR filter changes.
 
3773         if (is_valid_passthrough_msr(msr)) {
 
3774                 int idx = possible_passthrough_msr_slot(msr);
 
3776                 if (idx != -ENOENT) {
 
3777                         if (type & MSR_TYPE_R)
 
3778                                 set_bit(idx, vmx->shadow_msr_intercept.read);
 
3779                         if (type & MSR_TYPE_W)
 
3780                                 set_bit(idx, vmx->shadow_msr_intercept.write);
 
3784         if (type & MSR_TYPE_R)
 
3785                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
 
3787         if (type & MSR_TYPE_W)
 
3788                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
 
3791 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
 
3795         if (cpu_has_secondary_exec_ctrls() &&
 
3796             (secondary_exec_controls_get(to_vmx(vcpu)) &
 
3797              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
 
3798                 mode |= MSR_BITMAP_MODE_X2APIC;
 
3799                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
 
3800                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
 
3806 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
 
3808         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
 
3809         unsigned long read_intercept;
 
3812         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
 
3814         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 
3815                 unsigned int read_idx = msr / BITS_PER_LONG;
 
3816                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
 
3818                 msr_bitmap[read_idx] = read_intercept;
 
3819                 msr_bitmap[write_idx] = ~0ul;
 
3823 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
 
3825         if (!cpu_has_vmx_msr_bitmap())
 
3828         vmx_reset_x2apic_msrs(vcpu, mode);
 
3831          * TPR reads and writes can be virtualized even if virtual interrupt
 
3832          * delivery is not in use.
 
3834         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
 
3835                                   !(mode & MSR_BITMAP_MODE_X2APIC));
 
3837         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
 
3838                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
 
3839                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
 
3840                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
 
3844 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
 
3846         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3847         u8 mode = vmx_msr_bitmap_mode(vcpu);
 
3848         u8 changed = mode ^ vmx->msr_bitmap_mode;
 
3853         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
 
3854                 vmx_update_msr_bitmap_x2apic(vcpu, mode);
 
3856         vmx->msr_bitmap_mode = mode;
 
3859 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
 
3861         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3862         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
 
3865         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
 
3866         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
 
3867         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
 
3868         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
 
3869         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
 
3870                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
 
3871                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
 
3875 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
 
3877         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3882         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
 
3883                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
 
3884                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
 
3887         rvi = vmx_get_rvi();
 
3889         vapic_page = vmx->nested.virtual_apic_map.hva;
 
3890         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
 
3892         return ((rvi & 0xf0) > (vppr & 0xf0));
 
3895 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
 
3897         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3901          * Set intercept permissions for all potentially passed through MSRs
 
3902          * again. They will automatically get filtered through the MSR filter,
 
3903          * so we are back in sync after this.
 
3905         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
 
3906                 u32 msr = vmx_possible_passthrough_msrs[i];
 
3907                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
 
3908                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
 
3910                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
 
3911                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
 
3914         pt_update_intercept_for_msr(vcpu);
 
3915         vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
 
3918 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
 
3922         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
 
3924         if (vcpu->mode == IN_GUEST_MODE) {
 
3926                  * The vector of interrupt to be delivered to vcpu had
 
3927                  * been set in PIR before this function.
 
3929                  * Following cases will be reached in this block, and
 
3930                  * we always send a notification event in all cases as
 
3933                  * Case 1: vcpu keeps in non-root mode. Sending a
 
3934                  * notification event posts the interrupt to vcpu.
 
3936                  * Case 2: vcpu exits to root mode and is still
 
3937                  * runnable. PIR will be synced to vIRR before the
 
3938                  * next vcpu entry. Sending a notification event in
 
3939                  * this case has no effect, as vcpu is not in root
 
3942                  * Case 3: vcpu exits to root mode and is blocked.
 
3943                  * vcpu_block() has already synced PIR to vIRR and
 
3944                  * never blocks vcpu if vIRR is not cleared. Therefore,
 
3945                  * a blocked vcpu here does not wait for any requested
 
3946                  * interrupts in PIR, and sending a notification event
 
3947                  * which has no effect is safe here.
 
3950                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
 
3957 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
 
3960         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3962         if (is_guest_mode(vcpu) &&
 
3963             vector == vmx->nested.posted_intr_nv) {
 
3965                  * If a posted intr is not recognized by hardware,
 
3966                  * we will accomplish it in the next vmentry.
 
3968                 vmx->nested.pi_pending = true;
 
3969                 kvm_make_request(KVM_REQ_EVENT, vcpu);
 
3970                 /* the PIR and ON have been set by L1. */
 
3971                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
 
3972                         kvm_vcpu_kick(vcpu);
 
3978  * Send interrupt to vcpu via posted interrupt way.
 
3979  * 1. If target vcpu is running(non-root mode), send posted interrupt
 
3980  * notification to vcpu and hardware will sync PIR to vIRR atomically.
 
3981  * 2. If target vcpu isn't running(root mode), kick it to pick up the
 
3982  * interrupt from PIR in next vmentry.
 
3984 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
 
3986         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
3989         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
 
3993         if (!vcpu->arch.apicv_active)
 
3996         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
 
3999         /* If a previous notification has sent the IPI, nothing to do.  */
 
4000         if (pi_test_and_set_on(&vmx->pi_desc))
 
4003         if (vcpu != kvm_get_running_vcpu() &&
 
4004             !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
 
4005                 kvm_vcpu_kick(vcpu);
 
4011  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
 
4012  * will not change in the lifetime of the guest.
 
4013  * Note that host-state that does change is set elsewhere. E.g., host-state
 
4014  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
 
4016 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
 
4020         unsigned long cr0, cr3, cr4;
 
4023         WARN_ON(cr0 & X86_CR0_TS);
 
4024         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
 
4027          * Save the most likely value for this task's CR3 in the VMCS.
 
4028          * We can't use __get_current_cr3_fast() because we're not atomic.
 
4031         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
 
4032         vmx->loaded_vmcs->host_state.cr3 = cr3;
 
4034         /* Save the most likely value for this task's CR4 in the VMCS. */
 
4035         cr4 = cr4_read_shadow();
 
4036         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
 
4037         vmx->loaded_vmcs->host_state.cr4 = cr4;
 
4039         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
 
4040 #ifdef CONFIG_X86_64
 
4042          * Load null selectors, so we can avoid reloading them in
 
4043          * vmx_prepare_switch_to_host(), in case userspace uses
 
4044          * the null selectors too (the expected case).
 
4046         vmcs_write16(HOST_DS_SELECTOR, 0);
 
4047         vmcs_write16(HOST_ES_SELECTOR, 0);
 
4049         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
 
4050         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
 
4052         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
 
4053         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
 
4055         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
 
4057         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
 
4059         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
 
4060         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
 
4061         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
 
4062         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
 
4064         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
 
4065                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
 
4066                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
 
4069         if (cpu_has_load_ia32_efer())
 
4070                 vmcs_write64(HOST_IA32_EFER, host_efer);
 
4073 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
 
4075         struct kvm_vcpu *vcpu = &vmx->vcpu;
 
4077         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
 
4078                                           ~vcpu->arch.cr4_guest_rsvd_bits;
 
4080                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
 
4081         if (is_guest_mode(&vmx->vcpu))
 
4082                 vcpu->arch.cr4_guest_owned_bits &=
 
4083                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
 
4084         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
 
4087 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
 
4089         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
 
4091         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
 
4092                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
 
4095                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
 
4097         if (!enable_preemption_timer)
 
4098                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
 
4100         return pin_based_exec_ctrl;
 
4103 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
 
4105         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
4107         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
 
4108         if (cpu_has_secondary_exec_ctrls()) {
 
4109                 if (kvm_vcpu_apicv_active(vcpu))
 
4110                         secondary_exec_controls_setbit(vmx,
 
4111                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
 
4112                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
 
4114                         secondary_exec_controls_clearbit(vmx,
 
4115                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
 
4116                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
 
4119         if (cpu_has_vmx_msr_bitmap())
 
4120                 vmx_update_msr_bitmap(vcpu);
 
4123 u32 vmx_exec_control(struct vcpu_vmx *vmx)
 
4125         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
 
4127         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
 
4128                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
 
4130         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
 
4131                 exec_control &= ~CPU_BASED_TPR_SHADOW;
 
4132 #ifdef CONFIG_X86_64
 
4133                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
 
4134                                 CPU_BASED_CR8_LOAD_EXITING;
 
4138                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
 
4139                                 CPU_BASED_CR3_LOAD_EXITING  |
 
4140                                 CPU_BASED_INVLPG_EXITING;
 
4141         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
 
4142                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
 
4143                                 CPU_BASED_MONITOR_EXITING);
 
4144         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
 
4145                 exec_control &= ~CPU_BASED_HLT_EXITING;
 
4146         return exec_control;
 
4150  * Adjust a single secondary execution control bit to intercept/allow an
 
4151  * instruction in the guest.  This is usually done based on whether or not a
 
4152  * feature has been exposed to the guest in order to correctly emulate faults.
 
4155 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
 
4156                                   u32 control, bool enabled, bool exiting)
 
4159          * If the control is for an opt-in feature, clear the control if the
 
4160          * feature is not exposed to the guest, i.e. not enabled.  If the
 
4161          * control is opt-out, i.e. an exiting control, clear the control if
 
4162          * the feature _is_ exposed to the guest, i.e. exiting/interception is
 
4163          * disabled for the associated instruction.  Note, the caller is
 
4164          * responsible presetting exec_control to set all supported bits.
 
4166         if (enabled == exiting)
 
4167                 *exec_control &= ~control;
 
4170          * Update the nested MSR settings so that a nested VMM can/can't set
 
4171          * controls for features that are/aren't exposed to the guest.
 
4175                         vmx->nested.msrs.secondary_ctls_high |= control;
 
4177                         vmx->nested.msrs.secondary_ctls_high &= ~control;
 
4182  * Wrapper macro for the common case of adjusting a secondary execution control
 
4183  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
 
4184  * verifies that the control is actually supported by KVM and hardware.
 
4186 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
 
4190         if (cpu_has_vmx_##name()) {                                      \
 
4191                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
 
4192                                             X86_FEATURE_##feat_name);    \
 
4193                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
 
4194                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
 
4198 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
 
4199 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
 
4200         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
 
4202 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
 
4203         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
 
4205 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
 
4207         struct kvm_vcpu *vcpu = &vmx->vcpu;
 
4209         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
 
4211         if (vmx_pt_mode_is_system())
 
4212                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
 
4213         if (!cpu_need_virtualize_apic_accesses(vcpu))
 
4214                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 
4216                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
 
4218                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
 
4219                 enable_unrestricted_guest = 0;
 
4221         if (!enable_unrestricted_guest)
 
4222                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
 
4223         if (kvm_pause_in_guest(vmx->vcpu.kvm))
 
4224                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
 
4225         if (!kvm_vcpu_apicv_active(vcpu))
 
4226                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
 
4227                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
 
4228         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
 
4230         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
 
4231          * in vmx_set_cr4.  */
 
4232         exec_control &= ~SECONDARY_EXEC_DESC;
 
4234         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
 
4236            We can NOT enable shadow_vmcs here because we don't have yet
 
4239         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
 
4242          * PML is enabled/disabled when dirty logging of memsmlots changes, but
 
4243          * it needs to be set here when dirty logging is already active, e.g.
 
4244          * if this vCPU was created after dirty logging was enabled.
 
4246         if (!vcpu->kvm->arch.cpu_dirty_logging_count)
 
4247                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
 
4249         if (cpu_has_vmx_xsaves()) {
 
4250                 /* Exposing XSAVES only when XSAVE is exposed */
 
4251                 bool xsaves_enabled =
 
4252                         boot_cpu_has(X86_FEATURE_XSAVE) &&
 
4253                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
 
4254                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
 
4256                 vcpu->arch.xsaves_enabled = xsaves_enabled;
 
4258                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
 
4259                                                   SECONDARY_EXEC_XSAVES,
 
4260                                                   xsaves_enabled, false);
 
4264          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
 
4265          * feature is exposed to the guest.  This creates a virtualization hole
 
4266          * if both are supported in hardware but only one is exposed to the
 
4267          * guest, but letting the guest execute RDTSCP or RDPID when either one
 
4268          * is advertised is preferable to emulating the advertised instruction
 
4269          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
 
4271         if (cpu_has_vmx_rdtscp()) {
 
4272                 bool rdpid_or_rdtscp_enabled =
 
4273                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
 
4274                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
 
4276                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
 
4277                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
 
4278                                                   rdpid_or_rdtscp_enabled, false);
 
4280         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
 
4282         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
 
4283         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
 
4285         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
 
4286                                     ENABLE_USR_WAIT_PAUSE, false);
 
4288         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
 
4289                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
 
4291         vmx->secondary_exec_control = exec_control;
 
4294 #define VMX_XSS_EXIT_BITMAP 0
 
4297  * Noting that the initialization of Guest-state Area of VMCS is in
 
4300 static void init_vmcs(struct vcpu_vmx *vmx)
 
4303                 nested_vmx_set_vmcs_shadowing_bitmap();
 
4305         if (cpu_has_vmx_msr_bitmap())
 
4306                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
 
4308         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
 
4311         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
 
4313         exec_controls_set(vmx, vmx_exec_control(vmx));
 
4315         if (cpu_has_secondary_exec_ctrls()) {
 
4316                 vmx_compute_secondary_exec_control(vmx);
 
4317                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
 
4320         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
 
4321                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
 
4322                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
 
4323                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
 
4324                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
 
4326                 vmcs_write16(GUEST_INTR_STATUS, 0);
 
4328                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
 
4329                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
 
4332         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
 
4333                 vmcs_write32(PLE_GAP, ple_gap);
 
4334                 vmx->ple_window = ple_window;
 
4335                 vmx->ple_window_dirty = true;
 
4338         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
 
4339         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
 
4340         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
 
4342         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
 
4343         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
 
4344         vmx_set_constant_host_state(vmx);
 
4345         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
 
4346         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
 
4348         if (cpu_has_vmx_vmfunc())
 
4349                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
 
4351         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
 
4352         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
 
4353         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
 
4354         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
 
4355         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
 
4357         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
 
4358                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
 
4360         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
 
4362         /* 22.2.1, 20.8.1 */
 
4363         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
 
4365         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
 
4366         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
 
4368         set_cr4_guest_host_mask(vmx);
 
4371                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
 
4373         if (cpu_has_vmx_xsaves())
 
4374                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
 
4377                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
 
4378                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
 
4381         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
 
4383         if (vmx_pt_mode_is_host_guest()) {
 
4384                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
 
4385                 /* Bit[6~0] are forced to 1, writes are ignored. */
 
4386                 vmx->pt_desc.guest.output_mask = 0x7F;
 
4387                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
 
4391 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
 
4393         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
4394         struct msr_data apic_base_msr;
 
4398         vmx->rmode.vm86_active = 0;
 
4401         vmx->msr_ia32_umwait_control = 0;
 
4404         if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
 
4405                 eax = get_rdx_init_val();
 
4406         kvm_rdx_write(vcpu, eax);
 
4408         vmx->hv_deadline_tsc = -1;
 
4409         kvm_set_cr8(vcpu, 0);
 
4412                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
 
4413                                      MSR_IA32_APICBASE_ENABLE;
 
4414                 if (kvm_vcpu_is_reset_bsp(vcpu))
 
4415                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
 
4416                 apic_base_msr.host_initiated = true;
 
4417                 kvm_set_apic_base(vcpu, &apic_base_msr);
 
4420         vmx_segment_cache_clear(vmx);
 
4422         seg_setup(VCPU_SREG_CS);
 
4423         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
 
4424         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
 
4426         seg_setup(VCPU_SREG_DS);
 
4427         seg_setup(VCPU_SREG_ES);
 
4428         seg_setup(VCPU_SREG_FS);
 
4429         seg_setup(VCPU_SREG_GS);
 
4430         seg_setup(VCPU_SREG_SS);
 
4432         vmcs_write16(GUEST_TR_SELECTOR, 0);
 
4433         vmcs_writel(GUEST_TR_BASE, 0);
 
4434         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
 
4435         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
 
4437         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
 
4438         vmcs_writel(GUEST_LDTR_BASE, 0);
 
4439         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
 
4440         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
 
4443                 vmcs_write32(GUEST_SYSENTER_CS, 0);
 
4444                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
 
4445                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
 
4446                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
 
4449         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
 
4450         kvm_rip_write(vcpu, 0xfff0);
 
4452         vmcs_writel(GUEST_GDTR_BASE, 0);
 
4453         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
 
4455         vmcs_writel(GUEST_IDTR_BASE, 0);
 
4456         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
 
4458         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
 
4459         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
 
4460         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
 
4461         if (kvm_mpx_supported())
 
4462                 vmcs_write64(GUEST_BNDCFGS, 0);
 
4466         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
 
4468         if (cpu_has_vmx_tpr_shadow() && !init_event) {
 
4469                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
 
4470                 if (cpu_need_tpr_shadow(vcpu))
 
4471                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
 
4472                                      __pa(vcpu->arch.apic->regs));
 
4473                 vmcs_write32(TPR_THRESHOLD, 0);
 
4476         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
 
4478         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
 
4479         vmx->vcpu.arch.cr0 = cr0;
 
4480         vmx_set_cr0(vcpu, cr0); /* enter rmode */
 
4481         vmx_set_cr4(vcpu, 0);
 
4482         vmx_set_efer(vcpu, 0);
 
4484         vmx_update_exception_bitmap(vcpu);
 
4486         vpid_sync_context(vmx->vpid);
 
4488                 vmx_clear_hlt(vcpu);
 
4491 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
 
4493         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
 
4496 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
 
4499             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
 
4500                 vmx_enable_irq_window(vcpu);
 
4504         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
 
4507 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
 
4509         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
4511         int irq = vcpu->arch.interrupt.nr;
 
4513         trace_kvm_inj_virq(irq);
 
4515         ++vcpu->stat.irq_injections;
 
4516         if (vmx->rmode.vm86_active) {
 
4518                 if (vcpu->arch.interrupt.soft)
 
4519                         inc_eip = vcpu->arch.event_exit_inst_len;
 
4520                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
 
4523         intr = irq | INTR_INFO_VALID_MASK;
 
4524         if (vcpu->arch.interrupt.soft) {
 
4525                 intr |= INTR_TYPE_SOFT_INTR;
 
4526                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
 
4527                              vmx->vcpu.arch.event_exit_inst_len);
 
4529                 intr |= INTR_TYPE_EXT_INTR;
 
4530         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
 
4532         vmx_clear_hlt(vcpu);
 
4535 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
 
4537         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
4541                  * Tracking the NMI-blocked state in software is built upon
 
4542                  * finding the next open IRQ window. This, in turn, depends on
 
4543                  * well-behaving guests: They have to keep IRQs disabled at
 
4544                  * least as long as the NMI handler runs. Otherwise we may
 
4545                  * cause NMI nesting, maybe breaking the guest. But as this is
 
4546                  * highly unlikely, we can live with the residual risk.
 
4548                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
 
4549                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
 
4552         ++vcpu->stat.nmi_injections;
 
4553         vmx->loaded_vmcs->nmi_known_unmasked = false;
 
4555         if (vmx->rmode.vm86_active) {
 
4556                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
 
4560         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
 
4561                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
 
4563         vmx_clear_hlt(vcpu);
 
4566 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
 
4568         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
4572                 return vmx->loaded_vmcs->soft_vnmi_blocked;
 
4573         if (vmx->loaded_vmcs->nmi_known_unmasked)
 
4575         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
 
4576         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
 
4580 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
 
4582         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
4585                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
 
4586                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
 
4587                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
 
4590                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
 
4592                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
 
4593                                       GUEST_INTR_STATE_NMI);
 
4595                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
 
4596                                         GUEST_INTR_STATE_NMI);
 
4600 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
 
4602         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
 
4605         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
 
4608         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
 
4609                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
 
4610                  GUEST_INTR_STATE_NMI));
 
4613 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
 
4615         if (to_vmx(vcpu)->nested.nested_run_pending)
 
4618         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
 
4619         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
 
4622         return !vmx_nmi_blocked(vcpu);
 
4625 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
 
4627         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
 
4630         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
 
4631                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
 
4632                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
 
4635 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
 
4637         if (to_vmx(vcpu)->nested.nested_run_pending)
 
4641         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
 
4642         * e.g. if the IRQ arrived asynchronously after checking nested events.
 
4644         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
 
4647         return !vmx_interrupt_blocked(vcpu);
 
4650 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
 
4654         if (enable_unrestricted_guest)
 
4657         mutex_lock(&kvm->slots_lock);
 
4658         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
 
4660         mutex_unlock(&kvm->slots_lock);
 
4663                 return PTR_ERR(ret);
 
4665         to_kvm_vmx(kvm)->tss_addr = addr;
 
4667         return init_rmode_tss(kvm, ret);
 
4670 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
 
4672         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
 
4676 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
 
4681                  * Update instruction length as we may reinject the exception
 
4682                  * from user space while in guest debugging mode.
 
4684                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
 
4685                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 
4686                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
 
4690                 return !(vcpu->guest_debug &
 
4691                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
 
4705 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
 
4706                                   int vec, u32 err_code)
 
4709          * Instruction with address size override prefix opcode 0x67
 
4710          * Cause the #SS fault with 0 error code in VM86 mode.
 
4712         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
 
4713                 if (kvm_emulate_instruction(vcpu, 0)) {
 
4714                         if (vcpu->arch.halt_request) {
 
4715                                 vcpu->arch.halt_request = 0;
 
4716                                 return kvm_vcpu_halt(vcpu);
 
4724          * Forward all other exceptions that are valid in real mode.
 
4725          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
 
4726          *        the required debugging infrastructure rework.
 
4728         kvm_queue_exception(vcpu, vec);
 
4732 static int handle_machine_check(struct kvm_vcpu *vcpu)
 
4734         /* handled by vmx_vcpu_run() */
 
4739  * If the host has split lock detection disabled, then #AC is
 
4740  * unconditionally injected into the guest, which is the pre split lock
 
4741  * detection behaviour.
 
4743  * If the host has split lock detection enabled then #AC is
 
4744  * only injected into the guest when:
 
4745  *  - Guest CPL == 3 (user mode)
 
4746  *  - Guest has #AC detection enabled in CR0
 
4747  *  - Guest EFLAGS has AC bit set
 
4749 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
 
4751         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
 
4754         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
 
4755                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
 
4758 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
 
4760         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
4761         struct kvm_run *kvm_run = vcpu->run;
 
4762         u32 intr_info, ex_no, error_code;
 
4763         unsigned long cr2, dr6;
 
4766         vect_info = vmx->idt_vectoring_info;
 
4767         intr_info = vmx_get_intr_info(vcpu);
 
4769         if (is_machine_check(intr_info) || is_nmi(intr_info))
 
4770                 return 1; /* handled by handle_exception_nmi_irqoff() */
 
4772         if (is_invalid_opcode(intr_info))
 
4773                 return handle_ud(vcpu);
 
4776         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
 
4777                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
 
4779         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
 
4780                 WARN_ON_ONCE(!enable_vmware_backdoor);
 
4783                  * VMware backdoor emulation on #GP interception only handles
 
4784                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
 
4785                  * error code on #GP.
 
4788                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
 
4791                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
 
4795          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
 
4796          * MMIO, it is better to report an internal error.
 
4797          * See the comments in vmx_handle_exit.
 
4799         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
 
4800             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
 
4801                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 
4802                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
 
4803                 vcpu->run->internal.ndata = 4;
 
4804                 vcpu->run->internal.data[0] = vect_info;
 
4805                 vcpu->run->internal.data[1] = intr_info;
 
4806                 vcpu->run->internal.data[2] = error_code;
 
4807                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
 
4811         if (is_page_fault(intr_info)) {
 
4812                 cr2 = vmx_get_exit_qual(vcpu);
 
4813                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
 
4815                          * EPT will cause page fault only if we need to
 
4816                          * detect illegal GPAs.
 
4818                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
 
4819                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
 
4822                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
 
4825         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
 
4827         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
 
4828                 return handle_rmode_exception(vcpu, ex_no, error_code);
 
4832                 dr6 = vmx_get_exit_qual(vcpu);
 
4833                 if (!(vcpu->guest_debug &
 
4834                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
 
4835                         if (is_icebp(intr_info))
 
4836                                 WARN_ON(!skip_emulated_instruction(vcpu));
 
4838                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
 
4841                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
 
4842                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
 
4846                  * Update instruction length as we may reinject #BP from
 
4847                  * user space while in guest debugging mode. Reading it for
 
4848                  * #DB as well causes no harm, it is not used in that case.
 
4850                 vmx->vcpu.arch.event_exit_inst_len =
 
4851                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 
4852                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
 
4853                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
 
4854                 kvm_run->debug.arch.exception = ex_no;
 
4857                 if (vmx_guest_inject_ac(vcpu)) {
 
4858                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
 
4863                  * Handle split lock. Depending on detection mode this will
 
4864                  * either warn and disable split lock detection for this
 
4865                  * task or force SIGBUS on it.
 
4867                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
 
4871                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
 
4872                 kvm_run->ex.exception = ex_no;
 
4873                 kvm_run->ex.error_code = error_code;
 
4879 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
 
4881         ++vcpu->stat.irq_exits;
 
4885 static int handle_triple_fault(struct kvm_vcpu *vcpu)
 
4887         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
 
4888         vcpu->mmio_needed = 0;
 
4892 static int handle_io(struct kvm_vcpu *vcpu)
 
4894         unsigned long exit_qualification;
 
4895         int size, in, string;
 
4898         exit_qualification = vmx_get_exit_qual(vcpu);
 
4899         string = (exit_qualification & 16) != 0;
 
4901         ++vcpu->stat.io_exits;
 
4904                 return kvm_emulate_instruction(vcpu, 0);
 
4906         port = exit_qualification >> 16;
 
4907         size = (exit_qualification & 7) + 1;
 
4908         in = (exit_qualification & 8) != 0;
 
4910         return kvm_fast_pio(vcpu, size, port, in);
 
4914 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
 
4917          * Patch in the VMCALL instruction:
 
4919         hypercall[0] = 0x0f;
 
4920         hypercall[1] = 0x01;
 
4921         hypercall[2] = 0xc1;
 
4924 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
 
4925 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
 
4927         if (is_guest_mode(vcpu)) {
 
4928                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 
4929                 unsigned long orig_val = val;
 
4932                  * We get here when L2 changed cr0 in a way that did not change
 
4933                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
 
4934                  * but did change L0 shadowed bits. So we first calculate the
 
4935                  * effective cr0 value that L1 would like to write into the
 
4936                  * hardware. It consists of the L2-owned bits from the new
 
4937                  * value combined with the L1-owned bits from L1's guest_cr0.
 
4939                 val = (val & ~vmcs12->cr0_guest_host_mask) |
 
4940                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
 
4942                 if (!nested_guest_cr0_valid(vcpu, val))
 
4945                 if (kvm_set_cr0(vcpu, val))
 
4947                 vmcs_writel(CR0_READ_SHADOW, orig_val);
 
4950                 if (to_vmx(vcpu)->nested.vmxon &&
 
4951                     !nested_host_cr0_valid(vcpu, val))
 
4954                 return kvm_set_cr0(vcpu, val);
 
4958 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
 
4960         if (is_guest_mode(vcpu)) {
 
4961                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 
4962                 unsigned long orig_val = val;
 
4964                 /* analogously to handle_set_cr0 */
 
4965                 val = (val & ~vmcs12->cr4_guest_host_mask) |
 
4966                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
 
4967                 if (kvm_set_cr4(vcpu, val))
 
4969                 vmcs_writel(CR4_READ_SHADOW, orig_val);
 
4972                 return kvm_set_cr4(vcpu, val);
 
4975 static int handle_desc(struct kvm_vcpu *vcpu)
 
4977         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
 
4978         return kvm_emulate_instruction(vcpu, 0);
 
4981 static int handle_cr(struct kvm_vcpu *vcpu)
 
4983         unsigned long exit_qualification, val;
 
4989         exit_qualification = vmx_get_exit_qual(vcpu);
 
4990         cr = exit_qualification & 15;
 
4991         reg = (exit_qualification >> 8) & 15;
 
4992         switch ((exit_qualification >> 4) & 3) {
 
4993         case 0: /* mov to cr */
 
4994                 val = kvm_register_read(vcpu, reg);
 
4995                 trace_kvm_cr_write(cr, val);
 
4998                         err = handle_set_cr0(vcpu, val);
 
4999                         return kvm_complete_insn_gp(vcpu, err);
 
5001                         WARN_ON_ONCE(enable_unrestricted_guest);
 
5003                         err = kvm_set_cr3(vcpu, val);
 
5004                         return kvm_complete_insn_gp(vcpu, err);
 
5006                         err = handle_set_cr4(vcpu, val);
 
5007                         return kvm_complete_insn_gp(vcpu, err);
 
5009                                 u8 cr8_prev = kvm_get_cr8(vcpu);
 
5011                                 err = kvm_set_cr8(vcpu, cr8);
 
5012                                 ret = kvm_complete_insn_gp(vcpu, err);
 
5013                                 if (lapic_in_kernel(vcpu))
 
5015                                 if (cr8_prev <= cr8)
 
5018                                  * TODO: we might be squashing a
 
5019                                  * KVM_GUESTDBG_SINGLESTEP-triggered
 
5020                                  * KVM_EXIT_DEBUG here.
 
5022                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
 
5028                 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
 
5030         case 1: /*mov from cr*/
 
5033                         WARN_ON_ONCE(enable_unrestricted_guest);
 
5035                         val = kvm_read_cr3(vcpu);
 
5036                         kvm_register_write(vcpu, reg, val);
 
5037                         trace_kvm_cr_read(cr, val);
 
5038                         return kvm_skip_emulated_instruction(vcpu);
 
5040                         val = kvm_get_cr8(vcpu);
 
5041                         kvm_register_write(vcpu, reg, val);
 
5042                         trace_kvm_cr_read(cr, val);
 
5043                         return kvm_skip_emulated_instruction(vcpu);
 
5047                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
 
5048                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
 
5049                 kvm_lmsw(vcpu, val);
 
5051                 return kvm_skip_emulated_instruction(vcpu);
 
5055         vcpu->run->exit_reason = 0;
 
5056         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
 
5057                (int)(exit_qualification >> 4) & 3, cr);
 
5061 static int handle_dr(struct kvm_vcpu *vcpu)
 
5063         unsigned long exit_qualification;
 
5067         exit_qualification = vmx_get_exit_qual(vcpu);
 
5068         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
 
5070         /* First, if DR does not exist, trigger UD */
 
5071         if (!kvm_require_dr(vcpu, dr))
 
5074         if (kvm_x86_ops.get_cpl(vcpu) > 0)
 
5077         dr7 = vmcs_readl(GUEST_DR7);
 
5080                  * As the vm-exit takes precedence over the debug trap, we
 
5081                  * need to emulate the latter, either for the host or the
 
5082                  * guest debugging itself.
 
5084                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
 
5085                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
 
5086                         vcpu->run->debug.arch.dr7 = dr7;
 
5087                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
 
5088                         vcpu->run->debug.arch.exception = DB_VECTOR;
 
5089                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
 
5092                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
 
5097         if (vcpu->guest_debug == 0) {
 
5098                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
 
5101                  * No more DR vmexits; force a reload of the debug registers
 
5102                  * and reenter on this instruction.  The next vmexit will
 
5103                  * retrieve the full state of the debug registers.
 
5105                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
 
5109         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
 
5110         if (exit_qualification & TYPE_MOV_FROM_DR) {
 
5113                 kvm_get_dr(vcpu, dr, &val);
 
5114                 kvm_register_write(vcpu, reg, val);
 
5117                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
 
5121         return kvm_complete_insn_gp(vcpu, err);
 
5124 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
 
5126         get_debugreg(vcpu->arch.db[0], 0);
 
5127         get_debugreg(vcpu->arch.db[1], 1);
 
5128         get_debugreg(vcpu->arch.db[2], 2);
 
5129         get_debugreg(vcpu->arch.db[3], 3);
 
5130         get_debugreg(vcpu->arch.dr6, 6);
 
5131         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
 
5133         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
 
5134         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
 
5137 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
 
5139         vmcs_writel(GUEST_DR7, val);
 
5142 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
 
5144         kvm_apic_update_ppr(vcpu);
 
5148 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
 
5150         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
 
5152         kvm_make_request(KVM_REQ_EVENT, vcpu);
 
5154         ++vcpu->stat.irq_window_exits;
 
5158 static int handle_invlpg(struct kvm_vcpu *vcpu)
 
5160         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
 
5162         kvm_mmu_invlpg(vcpu, exit_qualification);
 
5163         return kvm_skip_emulated_instruction(vcpu);
 
5166 static int handle_apic_access(struct kvm_vcpu *vcpu)
 
5168         if (likely(fasteoi)) {
 
5169                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
 
5170                 int access_type, offset;
 
5172                 access_type = exit_qualification & APIC_ACCESS_TYPE;
 
5173                 offset = exit_qualification & APIC_ACCESS_OFFSET;
 
5175                  * Sane guest uses MOV to write EOI, with written value
 
5176                  * not cared. So make a short-circuit here by avoiding
 
5177                  * heavy instruction emulation.
 
5179                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
 
5180                     (offset == APIC_EOI)) {
 
5181                         kvm_lapic_set_eoi(vcpu);
 
5182                         return kvm_skip_emulated_instruction(vcpu);
 
5185         return kvm_emulate_instruction(vcpu, 0);
 
5188 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
 
5190         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
 
5191         int vector = exit_qualification & 0xff;
 
5193         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
 
5194         kvm_apic_set_eoi_accelerated(vcpu, vector);
 
5198 static int handle_apic_write(struct kvm_vcpu *vcpu)
 
5200         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
 
5201         u32 offset = exit_qualification & 0xfff;
 
5203         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
 
5204         kvm_apic_write_nodecode(vcpu, offset);
 
5208 static int handle_task_switch(struct kvm_vcpu *vcpu)
 
5210         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
5211         unsigned long exit_qualification;
 
5212         bool has_error_code = false;
 
5215         int reason, type, idt_v, idt_index;
 
5217         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
 
5218         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
 
5219         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
 
5221         exit_qualification = vmx_get_exit_qual(vcpu);
 
5223         reason = (u32)exit_qualification >> 30;
 
5224         if (reason == TASK_SWITCH_GATE && idt_v) {
 
5226                 case INTR_TYPE_NMI_INTR:
 
5227                         vcpu->arch.nmi_injected = false;
 
5228                         vmx_set_nmi_mask(vcpu, true);
 
5230                 case INTR_TYPE_EXT_INTR:
 
5231                 case INTR_TYPE_SOFT_INTR:
 
5232                         kvm_clear_interrupt_queue(vcpu);
 
5234                 case INTR_TYPE_HARD_EXCEPTION:
 
5235                         if (vmx->idt_vectoring_info &
 
5236                             VECTORING_INFO_DELIVER_CODE_MASK) {
 
5237                                 has_error_code = true;
 
5239                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
 
5242                 case INTR_TYPE_SOFT_EXCEPTION:
 
5243                         kvm_clear_exception_queue(vcpu);
 
5249         tss_selector = exit_qualification;
 
5251         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
 
5252                        type != INTR_TYPE_EXT_INTR &&
 
5253                        type != INTR_TYPE_NMI_INTR))
 
5254                 WARN_ON(!skip_emulated_instruction(vcpu));
 
5257          * TODO: What about debug traps on tss switch?
 
5258          *       Are we supposed to inject them and update dr6?
 
5260         return kvm_task_switch(vcpu, tss_selector,
 
5261                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
 
5262                                reason, has_error_code, error_code);
 
5265 static int handle_ept_violation(struct kvm_vcpu *vcpu)
 
5267         unsigned long exit_qualification;
 
5271         exit_qualification = vmx_get_exit_qual(vcpu);
 
5274          * EPT violation happened while executing iret from NMI,
 
5275          * "blocked by NMI" bit has to be set before next VM entry.
 
5276          * There are errata that may cause this bit to not be set:
 
5279         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
 
5281                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
 
5282                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
 
5284         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
 
5285         trace_kvm_page_fault(gpa, exit_qualification);
 
5287         /* Is it a read fault? */
 
5288         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
 
5289                      ? PFERR_USER_MASK : 0;
 
5290         /* Is it a write fault? */
 
5291         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
 
5292                       ? PFERR_WRITE_MASK : 0;
 
5293         /* Is it a fetch fault? */
 
5294         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
 
5295                       ? PFERR_FETCH_MASK : 0;
 
5296         /* ept page table entry is present? */
 
5297         error_code |= (exit_qualification &
 
5298                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
 
5299                         EPT_VIOLATION_EXECUTABLE))
 
5300                       ? PFERR_PRESENT_MASK : 0;
 
5302         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
 
5303                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
 
5305         vcpu->arch.exit_qualification = exit_qualification;
 
5308          * Check that the GPA doesn't exceed physical memory limits, as that is
 
5309          * a guest page fault.  We have to emulate the instruction here, because
 
5310          * if the illegal address is that of a paging structure, then
 
5311          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
 
5312          * would also use advanced VM-exit information for EPT violations to
 
5313          * reconstruct the page fault error code.
 
5315         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
 
5316                 return kvm_emulate_instruction(vcpu, 0);
 
5318         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
 
5321 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
 
5325         if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
 
5329          * A nested guest cannot optimize MMIO vmexits, because we have an
 
5330          * nGPA here instead of the required GPA.
 
5332         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
 
5333         if (!is_guest_mode(vcpu) &&
 
5334             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
 
5335                 trace_kvm_fast_mmio(gpa);
 
5336                 return kvm_skip_emulated_instruction(vcpu);
 
5339         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
 
5342 static int handle_nmi_window(struct kvm_vcpu *vcpu)
 
5344         if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
 
5347         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
 
5348         ++vcpu->stat.nmi_window_exits;
 
5349         kvm_make_request(KVM_REQ_EVENT, vcpu);
 
5354 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
 
5356         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
5357         bool intr_window_requested;
 
5358         unsigned count = 130;
 
5360         intr_window_requested = exec_controls_get(vmx) &
 
5361                                 CPU_BASED_INTR_WINDOW_EXITING;
 
5363         while (vmx->emulation_required && count-- != 0) {
 
5364                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
 
5365                         return handle_interrupt_window(&vmx->vcpu);
 
5367                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
 
5370                 if (!kvm_emulate_instruction(vcpu, 0))
 
5373                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
 
5374                     vcpu->arch.exception.pending) {
 
5375                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 
5376                         vcpu->run->internal.suberror =
 
5377                                                 KVM_INTERNAL_ERROR_EMULATION;
 
5378                         vcpu->run->internal.ndata = 0;
 
5382                 if (vcpu->arch.halt_request) {
 
5383                         vcpu->arch.halt_request = 0;
 
5384                         return kvm_vcpu_halt(vcpu);
 
5388                  * Note, return 1 and not 0, vcpu_run() will invoke
 
5389                  * xfer_to_guest_mode() which will create a proper return
 
5392                 if (__xfer_to_guest_mode_work_pending())
 
5399 static void grow_ple_window(struct kvm_vcpu *vcpu)
 
5401         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
5402         unsigned int old = vmx->ple_window;
 
5404         vmx->ple_window = __grow_ple_window(old, ple_window,
 
5408         if (vmx->ple_window != old) {
 
5409                 vmx->ple_window_dirty = true;
 
5410                 trace_kvm_ple_window_update(vcpu->vcpu_id,
 
5411                                             vmx->ple_window, old);
 
5415 static void shrink_ple_window(struct kvm_vcpu *vcpu)
 
5417         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
5418         unsigned int old = vmx->ple_window;
 
5420         vmx->ple_window = __shrink_ple_window(old, ple_window,
 
5424         if (vmx->ple_window != old) {
 
5425                 vmx->ple_window_dirty = true;
 
5426                 trace_kvm_ple_window_update(vcpu->vcpu_id,
 
5427                                             vmx->ple_window, old);
 
5432  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
 
5433  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
 
5435 static int handle_pause(struct kvm_vcpu *vcpu)
 
5437         if (!kvm_pause_in_guest(vcpu->kvm))
 
5438                 grow_ple_window(vcpu);
 
5441          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
 
5442          * VM-execution control is ignored if CPL > 0. OTOH, KVM
 
5443          * never set PAUSE_EXITING and just set PLE if supported,
 
5444          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
 
5446         kvm_vcpu_on_spin(vcpu, true);
 
5447         return kvm_skip_emulated_instruction(vcpu);
 
5450 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
 
5455 static int handle_invpcid(struct kvm_vcpu *vcpu)
 
5457         u32 vmx_instruction_info;
 
5465         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
 
5466                 kvm_queue_exception(vcpu, UD_VECTOR);
 
5470         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 
5471         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
 
5474                 kvm_inject_gp(vcpu, 0);
 
5478         /* According to the Intel instruction reference, the memory operand
 
5479          * is read even if it isn't needed (e.g., for type==all)
 
5481         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
 
5482                                 vmx_instruction_info, false,
 
5483                                 sizeof(operand), &gva))
 
5486         return kvm_handle_invpcid(vcpu, type, gva);
 
5489 static int handle_pml_full(struct kvm_vcpu *vcpu)
 
5491         unsigned long exit_qualification;
 
5493         trace_kvm_pml_full(vcpu->vcpu_id);
 
5495         exit_qualification = vmx_get_exit_qual(vcpu);
 
5498          * PML buffer FULL happened while executing iret from NMI,
 
5499          * "blocked by NMI" bit has to be set before next VM entry.
 
5501         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
 
5503                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
 
5504                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
 
5505                                 GUEST_INTR_STATE_NMI);
 
5508          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
 
5509          * here.., and there's no userspace involvement needed for PML.
 
5514 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
 
5516         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
5518         if (!vmx->req_immediate_exit &&
 
5519             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
 
5520                 kvm_lapic_expired_hv_timer(vcpu);
 
5521                 return EXIT_FASTPATH_REENTER_GUEST;
 
5524         return EXIT_FASTPATH_NONE;
 
5527 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
 
5529         handle_fastpath_preemption_timer(vcpu);
 
5534  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
 
5535  * are overwritten by nested_vmx_setup() when nested=1.
 
5537 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
 
5539         kvm_queue_exception(vcpu, UD_VECTOR);
 
5543 #ifndef CONFIG_X86_SGX_KVM
 
5544 static int handle_encls(struct kvm_vcpu *vcpu)
 
5547          * SGX virtualization is disabled.  There is no software enable bit for
 
5548          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
 
5549          * the guest from executing ENCLS (when SGX is supported by hardware).
 
5551         kvm_queue_exception(vcpu, UD_VECTOR);
 
5554 #endif /* CONFIG_X86_SGX_KVM */
 
5556 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
 
5558         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
 
5559         vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
 
5564  * The exit handlers return 1 if the exit was handled fully and guest execution
 
5565  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
 
5566  * to be done to userspace and return 0.
 
5568 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
 
5569         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
 
5570         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
 
5571         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
 
5572         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
 
5573         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
 
5574         [EXIT_REASON_CR_ACCESS]               = handle_cr,
 
5575         [EXIT_REASON_DR_ACCESS]               = handle_dr,
 
5576         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
 
5577         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
 
5578         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
 
5579         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
 
5580         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
 
5581         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
 
5582         [EXIT_REASON_INVLPG]                  = handle_invlpg,
 
5583         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
 
5584         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
 
5585         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
 
5586         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
 
5587         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
 
5588         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
 
5589         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
 
5590         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
 
5591         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
 
5592         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
 
5593         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
 
5594         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
 
5595         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
 
5596         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
 
5597         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
 
5598         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
 
5599         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
 
5600         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
 
5601         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
 
5602         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
 
5603         [EXIT_REASON_LDTR_TR]                 = handle_desc,
 
5604         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
 
5605         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
 
5606         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
 
5607         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
 
5608         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
 
5609         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
 
5610         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
 
5611         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
 
5612         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
 
5613         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
 
5614         [EXIT_REASON_PML_FULL]                = handle_pml_full,
 
5615         [EXIT_REASON_INVPCID]                 = handle_invpcid,
 
5616         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
 
5617         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
 
5618         [EXIT_REASON_ENCLS]                   = handle_encls,
 
5619         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
 
5622 static const int kvm_vmx_max_exit_handlers =
 
5623         ARRAY_SIZE(kvm_vmx_exit_handlers);
 
5625 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
 
5626                               u32 *intr_info, u32 *error_code)
 
5628         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
5630         *info1 = vmx_get_exit_qual(vcpu);
 
5631         if (!(vmx->exit_reason.failed_vmentry)) {
 
5632                 *info2 = vmx->idt_vectoring_info;
 
5633                 *intr_info = vmx_get_intr_info(vcpu);
 
5634                 if (is_exception_with_error_code(*intr_info))
 
5635                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
 
5645 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
 
5648                 __free_page(vmx->pml_pg);
 
5653 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
 
5655         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
5659         pml_idx = vmcs_read16(GUEST_PML_INDEX);
 
5661         /* Do nothing if PML buffer is empty */
 
5662         if (pml_idx == (PML_ENTITY_NUM - 1))
 
5665         /* PML index always points to next available PML buffer entity */
 
5666         if (pml_idx >= PML_ENTITY_NUM)
 
5671         pml_buf = page_address(vmx->pml_pg);
 
5672         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
 
5675                 gpa = pml_buf[pml_idx];
 
5676                 WARN_ON(gpa & (PAGE_SIZE - 1));
 
5677                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
 
5680         /* reset PML index */
 
5681         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
 
5684 static void vmx_dump_sel(char *name, uint32_t sel)
 
5686         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
 
5687                name, vmcs_read16(sel),
 
5688                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
 
5689                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
 
5690                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
 
5693 static void vmx_dump_dtsel(char *name, uint32_t limit)
 
5695         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
 
5696                name, vmcs_read32(limit),
 
5697                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
 
5700 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
 
5703         struct vmx_msr_entry *e;
 
5705         pr_err("MSR %s:\n", name);
 
5706         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
 
5707                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
 
5710 void dump_vmcs(struct kvm_vcpu *vcpu)
 
5712         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
5713         u32 vmentry_ctl, vmexit_ctl;
 
5714         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
 
5718         if (!dump_invalid_vmcs) {
 
5719                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
 
5723         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
 
5724         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
 
5725         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
 
5726         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
 
5727         cr4 = vmcs_readl(GUEST_CR4);
 
5728         secondary_exec_control = 0;
 
5729         if (cpu_has_secondary_exec_ctrls())
 
5730                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
 
5732         pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
 
5733                vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
 
5734         pr_err("*** Guest State ***\n");
 
5735         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
 
5736                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
 
5737                vmcs_readl(CR0_GUEST_HOST_MASK));
 
5738         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
 
5739                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
 
5740         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
 
5741         if (cpu_has_vmx_ept()) {
 
5742                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
 
5743                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
 
5744                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
 
5745                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
 
5747         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
 
5748                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
 
5749         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
 
5750                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
 
5751         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
 
5752                vmcs_readl(GUEST_SYSENTER_ESP),
 
5753                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
 
5754         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
 
5755         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
 
5756         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
 
5757         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
 
5758         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
 
5759         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
 
5760         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
 
5761         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
 
5762         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
 
5763         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
 
5764         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
 
5765         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
 
5766                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
 
5767         else if (efer_slot >= 0)
 
5768                 pr_err("EFER= 0x%016llx (autoload)\n",
 
5769                        vmx->msr_autoload.guest.val[efer_slot].value);
 
5770         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
 
5771                 pr_err("EFER= 0x%016llx (effective)\n",
 
5772                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
 
5774                 pr_err("EFER= 0x%016llx (effective)\n",
 
5775                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
 
5776         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
 
5777                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
 
5778         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
 
5779                vmcs_read64(GUEST_IA32_DEBUGCTL),
 
5780                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
 
5781         if (cpu_has_load_perf_global_ctrl() &&
 
5782             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
 
5783                 pr_err("PerfGlobCtl = 0x%016llx\n",
 
5784                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
 
5785         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
 
5786                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
 
5787         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
 
5788                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
 
5789                vmcs_read32(GUEST_ACTIVITY_STATE));
 
5790         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
 
5791                 pr_err("InterruptStatus = %04x\n",
 
5792                        vmcs_read16(GUEST_INTR_STATUS));
 
5793         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
 
5794                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
 
5795         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
 
5796                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
 
5798         pr_err("*** Host State ***\n");
 
5799         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
 
5800                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
 
5801         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
 
5802                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
 
5803                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
 
5804                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
 
5805                vmcs_read16(HOST_TR_SELECTOR));
 
5806         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
 
5807                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
 
5808                vmcs_readl(HOST_TR_BASE));
 
5809         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
 
5810                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
 
5811         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
 
5812                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
 
5813                vmcs_readl(HOST_CR4));
 
5814         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
 
5815                vmcs_readl(HOST_IA32_SYSENTER_ESP),
 
5816                vmcs_read32(HOST_IA32_SYSENTER_CS),
 
5817                vmcs_readl(HOST_IA32_SYSENTER_EIP));
 
5818         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
 
5819                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
 
5820         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
 
5821                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
 
5822         if (cpu_has_load_perf_global_ctrl() &&
 
5823             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
 
5824                 pr_err("PerfGlobCtl = 0x%016llx\n",
 
5825                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
 
5826         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
 
5827                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
 
5829         pr_err("*** Control State ***\n");
 
5830         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
 
5831                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
 
5832         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
 
5833         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
 
5834                vmcs_read32(EXCEPTION_BITMAP),
 
5835                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
 
5836                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
 
5837         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
 
5838                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
 
5839                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
 
5840                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
 
5841         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
 
5842                vmcs_read32(VM_EXIT_INTR_INFO),
 
5843                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
 
5844                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
 
5845         pr_err("        reason=%08x qualification=%016lx\n",
 
5846                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
 
5847         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
 
5848                vmcs_read32(IDT_VECTORING_INFO_FIELD),
 
5849                vmcs_read32(IDT_VECTORING_ERROR_CODE));
 
5850         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
 
5851         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
 
5852                 pr_err("TSC Multiplier = 0x%016llx\n",
 
5853                        vmcs_read64(TSC_MULTIPLIER));
 
5854         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
 
5855                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
 
5856                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
 
5857                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
 
5859                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
 
5860                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
 
5861                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
 
5862                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
 
5864         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
 
5865                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
 
5866         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
 
5867                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
 
5868         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
 
5869                 pr_err("PLE Gap=%08x Window=%08x\n",
 
5870                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
 
5871         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
 
5872                 pr_err("Virtual processor ID = 0x%04x\n",
 
5873                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
 
5877  * The guest has exited.  See if we can fix it or if we need userspace
 
5880 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
 
5882         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
5883         union vmx_exit_reason exit_reason = vmx->exit_reason;
 
5884         u32 vectoring_info = vmx->idt_vectoring_info;
 
5885         u16 exit_handler_index;
 
5888          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
 
5889          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
 
5890          * querying dirty_bitmap, we only need to kick all vcpus out of guest
 
5891          * mode as if vcpus is in root mode, the PML buffer must has been
 
5892          * flushed already.  Note, PML is never enabled in hardware while
 
5895         if (enable_pml && !is_guest_mode(vcpu))
 
5896                 vmx_flush_pml_buffer(vcpu);
 
5899          * We should never reach this point with a pending nested VM-Enter, and
 
5900          * more specifically emulation of L2 due to invalid guest state (see
 
5901          * below) should never happen as that means we incorrectly allowed a
 
5902          * nested VM-Enter with an invalid vmcs12.
 
5904         if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
 
5907         /* If guest state is invalid, start emulating */
 
5908         if (vmx->emulation_required)
 
5909                 return handle_invalid_guest_state(vcpu);
 
5911         if (is_guest_mode(vcpu)) {
 
5913                  * PML is never enabled when running L2, bail immediately if a
 
5914                  * PML full exit occurs as something is horribly wrong.
 
5916                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
 
5917                         goto unexpected_vmexit;
 
5920                  * The host physical addresses of some pages of guest memory
 
5921                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
 
5922                  * Page). The CPU may write to these pages via their host
 
5923                  * physical address while L2 is running, bypassing any
 
5924                  * address-translation-based dirty tracking (e.g. EPT write
 
5927                  * Mark them dirty on every exit from L2 to prevent them from
 
5928                  * getting out of sync with dirty tracking.
 
5930                 nested_mark_vmcs12_pages_dirty(vcpu);
 
5932                 if (nested_vmx_reflect_vmexit(vcpu))
 
5936         if (exit_reason.failed_vmentry) {
 
5938                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 
5939                 vcpu->run->fail_entry.hardware_entry_failure_reason
 
5941                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
 
5945         if (unlikely(vmx->fail)) {
 
5947                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 
5948                 vcpu->run->fail_entry.hardware_entry_failure_reason
 
5949                         = vmcs_read32(VM_INSTRUCTION_ERROR);
 
5950                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
 
5956          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
 
5957          * delivery event since it indicates guest is accessing MMIO.
 
5958          * The vm-exit can be triggered again after return to guest that
 
5959          * will cause infinite loop.
 
5961         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
 
5962             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
 
5963              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
 
5964              exit_reason.basic != EXIT_REASON_PML_FULL &&
 
5965              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
 
5966              exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
 
5969                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 
5970                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
 
5971                 vcpu->run->internal.data[0] = vectoring_info;
 
5972                 vcpu->run->internal.data[1] = exit_reason.full;
 
5973                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
 
5974                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
 
5975                         vcpu->run->internal.data[ndata++] =
 
5976                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
 
5978                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
 
5979                 vcpu->run->internal.ndata = ndata;
 
5983         if (unlikely(!enable_vnmi &&
 
5984                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
 
5985                 if (!vmx_interrupt_blocked(vcpu)) {
 
5986                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
 
5987                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
 
5988                            vcpu->arch.nmi_pending) {
 
5990                          * This CPU don't support us in finding the end of an
 
5991                          * NMI-blocked window if the guest runs with IRQs
 
5992                          * disabled. So we pull the trigger after 1 s of
 
5993                          * futile waiting, but inform the user about this.
 
5995                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
 
5996                                "state on VCPU %d after 1 s timeout\n",
 
5997                                __func__, vcpu->vcpu_id);
 
5998                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
 
6002         if (exit_fastpath != EXIT_FASTPATH_NONE)
 
6005         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
 
6006                 goto unexpected_vmexit;
 
6007 #ifdef CONFIG_RETPOLINE
 
6008         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
 
6009                 return kvm_emulate_wrmsr(vcpu);
 
6010         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
 
6011                 return handle_preemption_timer(vcpu);
 
6012         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
 
6013                 return handle_interrupt_window(vcpu);
 
6014         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
 
6015                 return handle_external_interrupt(vcpu);
 
6016         else if (exit_reason.basic == EXIT_REASON_HLT)
 
6017                 return kvm_emulate_halt(vcpu);
 
6018         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
 
6019                 return handle_ept_misconfig(vcpu);
 
6022         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
 
6023                                                 kvm_vmx_max_exit_handlers);
 
6024         if (!kvm_vmx_exit_handlers[exit_handler_index])
 
6025                 goto unexpected_vmexit;
 
6027         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
 
6030         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
 
6033         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 
6034         vcpu->run->internal.suberror =
 
6035                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
 
6036         vcpu->run->internal.ndata = 2;
 
6037         vcpu->run->internal.data[0] = exit_reason.full;
 
6038         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
 
6042 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
 
6044         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
 
6047          * Even when current exit reason is handled by KVM internally, we
 
6048          * still need to exit to user space when bus lock detected to inform
 
6049          * that there is a bus lock in guest.
 
6051         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
 
6053                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
 
6055                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
 
6062  * Software based L1D cache flush which is used when microcode providing
 
6063  * the cache control MSR is not loaded.
 
6065  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
 
6066  * flush it is required to read in 64 KiB because the replacement algorithm
 
6067  * is not exactly LRU. This could be sized at runtime via topology
 
6068  * information but as all relevant affected CPUs have 32KiB L1D cache size
 
6069  * there is no point in doing so.
 
6071 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
 
6073         int size = PAGE_SIZE << L1D_CACHE_ORDER;
 
6076          * This code is only executed when the the flush mode is 'cond' or
 
6079         if (static_branch_likely(&vmx_l1d_flush_cond)) {
 
6083                  * Clear the per-vcpu flush bit, it gets set again
 
6084                  * either from vcpu_run() or from one of the unsafe
 
6087                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
 
6088                 vcpu->arch.l1tf_flush_l1d = false;
 
6091                  * Clear the per-cpu flush bit, it gets set again from
 
6092                  * the interrupt handlers.
 
6094                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
 
6095                 kvm_clear_cpu_l1tf_flush_l1d();
 
6101         vcpu->stat.l1d_flush++;
 
6103         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
 
6104                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
 
6109                 /* First ensure the pages are in the TLB */
 
6110                 "xorl   %%eax, %%eax\n"
 
6111                 ".Lpopulate_tlb:\n\t"
 
6112                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
 
6113                 "addl   $4096, %%eax\n\t"
 
6114                 "cmpl   %%eax, %[size]\n\t"
 
6115                 "jne    .Lpopulate_tlb\n\t"
 
6116                 "xorl   %%eax, %%eax\n\t"
 
6118                 /* Now fill the cache */
 
6119                 "xorl   %%eax, %%eax\n"
 
6121                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
 
6122                 "addl   $64, %%eax\n\t"
 
6123                 "cmpl   %%eax, %[size]\n\t"
 
6124                 "jne    .Lfill_cache\n\t"
 
6126                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
 
6128                 : "eax", "ebx", "ecx", "edx");
 
6131 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
 
6133         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 
6136         if (is_guest_mode(vcpu) &&
 
6137                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
 
6140         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
 
6141         if (is_guest_mode(vcpu))
 
6142                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
 
6144                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
 
6147 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
 
6149         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
6150         u32 sec_exec_control;
 
6152         if (!lapic_in_kernel(vcpu))
 
6155         if (!flexpriority_enabled &&
 
6156             !cpu_has_vmx_virtualize_x2apic_mode())
 
6159         /* Postpone execution until vmcs01 is the current VMCS. */
 
6160         if (is_guest_mode(vcpu)) {
 
6161                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
 
6165         sec_exec_control = secondary_exec_controls_get(vmx);
 
6166         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
 
6167                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
 
6169         switch (kvm_get_apic_mode(vcpu)) {
 
6170         case LAPIC_MODE_INVALID:
 
6171                 WARN_ONCE(true, "Invalid local APIC state");
 
6173         case LAPIC_MODE_DISABLED:
 
6175         case LAPIC_MODE_XAPIC:
 
6176                 if (flexpriority_enabled) {
 
6178                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 
6179                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
 
6182                          * Flush the TLB, reloading the APIC access page will
 
6183                          * only do so if its physical address has changed, but
 
6184                          * the guest may have inserted a non-APIC mapping into
 
6185                          * the TLB while the APIC access page was disabled.
 
6187                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
 
6190         case LAPIC_MODE_X2APIC:
 
6191                 if (cpu_has_vmx_virtualize_x2apic_mode())
 
6193                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
 
6196         secondary_exec_controls_set(vmx, sec_exec_control);
 
6198         vmx_update_msr_bitmap(vcpu);
 
6201 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
 
6205         /* Defer reload until vmcs01 is the current VMCS. */
 
6206         if (is_guest_mode(vcpu)) {
 
6207                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
 
6211         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
 
6212             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
 
6215         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
 
6216         if (is_error_page(page))
 
6219         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
 
6220         vmx_flush_tlb_current(vcpu);
 
6223          * Do not pin apic access page in memory, the MMU notifier
 
6224          * will call us again if it is migrated or swapped out.
 
6229 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
 
6237         status = vmcs_read16(GUEST_INTR_STATUS);
 
6239         if (max_isr != old) {
 
6241                 status |= max_isr << 8;
 
6242                 vmcs_write16(GUEST_INTR_STATUS, status);
 
6246 static void vmx_set_rvi(int vector)
 
6254         status = vmcs_read16(GUEST_INTR_STATUS);
 
6255         old = (u8)status & 0xff;
 
6256         if ((u8)vector != old) {
 
6258                 status |= (u8)vector;
 
6259                 vmcs_write16(GUEST_INTR_STATUS, status);
 
6263 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
 
6266          * When running L2, updating RVI is only relevant when
 
6267          * vmcs12 virtual-interrupt-delivery enabled.
 
6268          * However, it can be enabled only when L1 also
 
6269          * intercepts external-interrupts and in that case
 
6270          * we should not update vmcs02 RVI but instead intercept
 
6271          * interrupt. Therefore, do nothing when running L2.
 
6273         if (!is_guest_mode(vcpu))
 
6274                 vmx_set_rvi(max_irr);
 
6277 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
 
6279         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
6281         bool max_irr_updated;
 
6283         if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm))
 
6286         if (pi_test_on(&vmx->pi_desc)) {
 
6287                 pi_clear_on(&vmx->pi_desc);
 
6289                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
 
6290                  * But on x86 this is just a compiler barrier anyway.
 
6292                 smp_mb__after_atomic();
 
6294                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
 
6297                  * If we are running L2 and L1 has a new pending interrupt
 
6298                  * which can be injected, we should re-evaluate
 
6299                  * what should be done with this new L1 interrupt.
 
6300                  * If L1 intercepts external-interrupts, we should
 
6301                  * exit from L2 to L1. Otherwise, interrupt should be
 
6302                  * delivered directly to L2.
 
6304                 if (is_guest_mode(vcpu) && max_irr_updated) {
 
6305                         if (nested_exit_on_intr(vcpu))
 
6306                                 kvm_vcpu_exiting_guest_mode(vcpu);
 
6308                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
 
6311                 max_irr = kvm_lapic_find_highest_irr(vcpu);
 
6313         vmx_hwapic_irr_update(vcpu, max_irr);
 
6317 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
 
6319         if (!kvm_vcpu_apicv_active(vcpu))
 
6322         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
 
6323         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
 
6324         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
 
6325         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
 
6328 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
 
6330         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
6332         pi_clear_on(&vmx->pi_desc);
 
6333         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
 
6336 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
 
6338 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
 
6339                                         unsigned long entry)
 
6341         kvm_before_interrupt(vcpu);
 
6342         vmx_do_interrupt_nmi_irqoff(entry);
 
6343         kvm_after_interrupt(vcpu);
 
6346 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
 
6348         const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
 
6349         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
 
6351         /* if exit due to PF check for async PF */
 
6352         if (is_page_fault(intr_info))
 
6353                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
 
6354         /* Handle machine checks before interrupts are enabled */
 
6355         else if (is_machine_check(intr_info))
 
6356                 kvm_machine_check();
 
6357         /* We need to handle NMIs before interrupts are enabled */
 
6358         else if (is_nmi(intr_info))
 
6359                 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
 
6362 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
 
6364         u32 intr_info = vmx_get_intr_info(vcpu);
 
6365         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
 
6366         gate_desc *desc = (gate_desc *)host_idt_base + vector;
 
6368         if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
 
6369             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
 
6372         handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
 
6375 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
 
6377         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
6379         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
 
6380                 handle_external_interrupt_irqoff(vcpu);
 
6381         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
 
6382                 handle_exception_nmi_irqoff(vmx);
 
6386  * The kvm parameter can be NULL (module initialization, or invocation before
 
6387  * VM creation). Be sure to check the kvm parameter before using it.
 
6389 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
 
6392         case MSR_IA32_SMBASE:
 
6394                  * We cannot do SMM unless we can run the guest in big
 
6397                 return enable_unrestricted_guest || emulate_invalid_guest_state;
 
6398         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
 
6400         case MSR_AMD64_VIRT_SPEC_CTRL:
 
6401                 /* This is AMD only.  */
 
6408 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
 
6413         bool idtv_info_valid;
 
6415         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
 
6418                 if (vmx->loaded_vmcs->nmi_known_unmasked)
 
6421                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
 
6422                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
 
6423                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
 
6425                  * SDM 3: 27.7.1.2 (September 2008)
 
6426                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
 
6427                  * a guest IRET fault.
 
6428                  * SDM 3: 23.2.2 (September 2008)
 
6429                  * Bit 12 is undefined in any of the following cases:
 
6430                  *  If the VM exit sets the valid bit in the IDT-vectoring
 
6431                  *   information field.
 
6432                  *  If the VM exit is due to a double fault.
 
6434                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
 
6435                     vector != DF_VECTOR && !idtv_info_valid)
 
6436                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
 
6437                                       GUEST_INTR_STATE_NMI);
 
6439                         vmx->loaded_vmcs->nmi_known_unmasked =
 
6440                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
 
6441                                   & GUEST_INTR_STATE_NMI);
 
6442         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
 
6443                 vmx->loaded_vmcs->vnmi_blocked_time +=
 
6444                         ktime_to_ns(ktime_sub(ktime_get(),
 
6445                                               vmx->loaded_vmcs->entry_time));
 
6448 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
 
6449                                       u32 idt_vectoring_info,
 
6450                                       int instr_len_field,
 
6451                                       int error_code_field)
 
6455         bool idtv_info_valid;
 
6457         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
 
6459         vcpu->arch.nmi_injected = false;
 
6460         kvm_clear_exception_queue(vcpu);
 
6461         kvm_clear_interrupt_queue(vcpu);
 
6463         if (!idtv_info_valid)
 
6466         kvm_make_request(KVM_REQ_EVENT, vcpu);
 
6468         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
 
6469         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
 
6472         case INTR_TYPE_NMI_INTR:
 
6473                 vcpu->arch.nmi_injected = true;
 
6475                  * SDM 3: 27.7.1.2 (September 2008)
 
6476                  * Clear bit "block by NMI" before VM entry if a NMI
 
6479                 vmx_set_nmi_mask(vcpu, false);
 
6481         case INTR_TYPE_SOFT_EXCEPTION:
 
6482                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
 
6484         case INTR_TYPE_HARD_EXCEPTION:
 
6485                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
 
6486                         u32 err = vmcs_read32(error_code_field);
 
6487                         kvm_requeue_exception_e(vcpu, vector, err);
 
6489                         kvm_requeue_exception(vcpu, vector);
 
6491         case INTR_TYPE_SOFT_INTR:
 
6492                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
 
6494         case INTR_TYPE_EXT_INTR:
 
6495                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
 
6502 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
 
6504         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
 
6505                                   VM_EXIT_INSTRUCTION_LEN,
 
6506                                   IDT_VECTORING_ERROR_CODE);
 
6509 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
 
6511         __vmx_complete_interrupts(vcpu,
 
6512                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
 
6513                                   VM_ENTRY_INSTRUCTION_LEN,
 
6514                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
 
6516         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
 
6519 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
 
6522         struct perf_guest_switch_msr *msrs;
 
6524         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
 
6525         msrs = perf_guest_get_msrs(&nr_msrs);
 
6529         for (i = 0; i < nr_msrs; i++)
 
6530                 if (msrs[i].host == msrs[i].guest)
 
6531                         clear_atomic_switch_msr(vmx, msrs[i].msr);
 
6533                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
 
6534                                         msrs[i].host, false);
 
6537 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
 
6539         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
6543         if (vmx->req_immediate_exit) {
 
6544                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
 
6545                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
 
6546         } else if (vmx->hv_deadline_tsc != -1) {
 
6548                 if (vmx->hv_deadline_tsc > tscl)
 
6549                         /* set_hv_timer ensures the delta fits in 32-bits */
 
6550                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
 
6551                                 cpu_preemption_timer_multi);
 
6555                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
 
6556                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
 
6557         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
 
6558                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
 
6559                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
 
6563 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
 
6565         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
 
6566                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
 
6567                 vmcs_writel(HOST_RSP, host_rsp);
 
6571 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
 
6573         switch (to_vmx(vcpu)->exit_reason.basic) {
 
6574         case EXIT_REASON_MSR_WRITE:
 
6575                 return handle_fastpath_set_msr_irqoff(vcpu);
 
6576         case EXIT_REASON_PREEMPTION_TIMER:
 
6577                 return handle_fastpath_preemption_timer(vcpu);
 
6579                 return EXIT_FASTPATH_NONE;
 
6583 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
 
6584                                         struct vcpu_vmx *vmx)
 
6586         kvm_guest_enter_irqoff();
 
6588         /* L1D Flush includes CPU buffer clear to mitigate MDS */
 
6589         if (static_branch_unlikely(&vmx_l1d_should_flush))
 
6590                 vmx_l1d_flush(vcpu);
 
6591         else if (static_branch_unlikely(&mds_user_clear))
 
6592                 mds_clear_cpu_buffers();
 
6594         if (vcpu->arch.cr2 != native_read_cr2())
 
6595                 native_write_cr2(vcpu->arch.cr2);
 
6597         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
 
6598                                    vmx->loaded_vmcs->launched);
 
6600         vcpu->arch.cr2 = native_read_cr2();
 
6602         kvm_guest_exit_irqoff();
 
6605 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
 
6607         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
6608         unsigned long cr3, cr4;
 
6610         /* Record the guest's net vcpu time for enforced NMI injections. */
 
6611         if (unlikely(!enable_vnmi &&
 
6612                      vmx->loaded_vmcs->soft_vnmi_blocked))
 
6613                 vmx->loaded_vmcs->entry_time = ktime_get();
 
6615         /* Don't enter VMX if guest state is invalid, let the exit handler
 
6616            start emulation until we arrive back to a valid state */
 
6617         if (vmx->emulation_required)
 
6618                 return EXIT_FASTPATH_NONE;
 
6620         trace_kvm_entry(vcpu);
 
6622         if (vmx->ple_window_dirty) {
 
6623                 vmx->ple_window_dirty = false;
 
6624                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
 
6628          * We did this in prepare_switch_to_guest, because it needs to
 
6629          * be within srcu_read_lock.
 
6631         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
 
6633         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
 
6634                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
 
6635         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
 
6636                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
 
6638         cr3 = __get_current_cr3_fast();
 
6639         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
 
6640                 vmcs_writel(HOST_CR3, cr3);
 
6641                 vmx->loaded_vmcs->host_state.cr3 = cr3;
 
6644         cr4 = cr4_read_shadow();
 
6645         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
 
6646                 vmcs_writel(HOST_CR4, cr4);
 
6647                 vmx->loaded_vmcs->host_state.cr4 = cr4;
 
6650         /* When single-stepping over STI and MOV SS, we must clear the
 
6651          * corresponding interruptibility bits in the guest state. Otherwise
 
6652          * vmentry fails as it then expects bit 14 (BS) in pending debug
 
6653          * exceptions being set, but that's not correct for the guest debugging
 
6655         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 
6656                 vmx_set_interrupt_shadow(vcpu, 0);
 
6658         kvm_load_guest_xsave_state(vcpu);
 
6660         pt_guest_enter(vmx);
 
6662         atomic_switch_perf_msrs(vmx);
 
6663         if (intel_pmu_lbr_is_enabled(vcpu))
 
6664                 vmx_passthrough_lbr_msrs(vcpu);
 
6666         if (enable_preemption_timer)
 
6667                 vmx_update_hv_timer(vcpu);
 
6669         kvm_wait_lapic_expire(vcpu);
 
6672          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
 
6673          * it's non-zero. Since vmentry is serialising on affected CPUs, there
 
6674          * is no need to worry about the conditional branch over the wrmsr
 
6675          * being speculatively taken.
 
6677         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
 
6679         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
 
6680         vmx_vcpu_enter_exit(vcpu, vmx);
 
6683          * We do not use IBRS in the kernel. If this vCPU has used the
 
6684          * SPEC_CTRL MSR it may have left it on; save the value and
 
6685          * turn it off. This is much more efficient than blindly adding
 
6686          * it to the atomic save/restore list. Especially as the former
 
6687          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
 
6689          * For non-nested case:
 
6690          * If the L01 MSR bitmap does not intercept the MSR, then we need to
 
6694          * If the L02 MSR bitmap does not intercept the MSR, then we need to
 
6697         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
 
6698                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
 
6700         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
 
6702         /* All fields are clean at this point */
 
6703         if (static_branch_unlikely(&enable_evmcs)) {
 
6704                 current_evmcs->hv_clean_fields |=
 
6705                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
 
6707                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
 
6710         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
 
6711         if (vmx->host_debugctlmsr)
 
6712                 update_debugctlmsr(vmx->host_debugctlmsr);
 
6714 #ifndef CONFIG_X86_64
 
6716          * The sysexit path does not restore ds/es, so we must set them to
 
6717          * a reasonable value ourselves.
 
6719          * We can't defer this to vmx_prepare_switch_to_host() since that
 
6720          * function may be executed in interrupt context, which saves and
 
6721          * restore segments around it, nullifying its effect.
 
6723         loadsegment(ds, __USER_DS);
 
6724         loadsegment(es, __USER_DS);
 
6727         vmx_register_cache_reset(vcpu);
 
6731         kvm_load_host_xsave_state(vcpu);
 
6733         if (is_guest_mode(vcpu)) {
 
6735                  * Track VMLAUNCH/VMRESUME that have made past guest state
 
6738                 if (vmx->nested.nested_run_pending &&
 
6739                     !vmx->exit_reason.failed_vmentry)
 
6740                         ++vcpu->stat.nested_run;
 
6742                 vmx->nested.nested_run_pending = 0;
 
6745         vmx->idt_vectoring_info = 0;
 
6747         if (unlikely(vmx->fail)) {
 
6748                 vmx->exit_reason.full = 0xdead;
 
6749                 return EXIT_FASTPATH_NONE;
 
6752         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
 
6753         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
 
6754                 kvm_machine_check();
 
6756         if (likely(!vmx->exit_reason.failed_vmentry))
 
6757                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
 
6759         trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
 
6761         if (unlikely(vmx->exit_reason.failed_vmentry))
 
6762                 return EXIT_FASTPATH_NONE;
 
6764         vmx->loaded_vmcs->launched = 1;
 
6766         vmx_recover_nmi_blocking(vmx);
 
6767         vmx_complete_interrupts(vmx);
 
6769         if (is_guest_mode(vcpu))
 
6770                 return EXIT_FASTPATH_NONE;
 
6772         return vmx_exit_handlers_fastpath(vcpu);
 
6775 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
 
6777         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
6780                 vmx_destroy_pml_buffer(vmx);
 
6781         free_vpid(vmx->vpid);
 
6782         nested_vmx_free_vcpu(vcpu);
 
6783         free_loaded_vmcs(vmx->loaded_vmcs);
 
6786 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
 
6788         struct vmx_uret_msr *tsx_ctrl;
 
6789         struct vcpu_vmx *vmx;
 
6792         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
 
6797         vmx->vpid = allocate_vpid();
 
6800          * If PML is turned on, failure on enabling PML just results in failure
 
6801          * of creating the vcpu, therefore we can simplify PML logic (by
 
6802          * avoiding dealing with cases, such as enabling PML partially on vcpus
 
6803          * for the guest), etc.
 
6806                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 
6811         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 
6812                 vmx->guest_uret_msrs[i].data = 0;
 
6813                 vmx->guest_uret_msrs[i].mask = -1ull;
 
6815         if (boot_cpu_has(X86_FEATURE_RTM)) {
 
6817                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
 
6818                  * Keep the host value unchanged to avoid changing CPUID bits
 
6819                  * under the host kernel's feet.
 
6821                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
 
6823                         vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
 
6826         err = alloc_loaded_vmcs(&vmx->vmcs01);
 
6830         /* The MSR bitmap starts with all ones */
 
6831         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
 
6832         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
 
6834         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
 
6835 #ifdef CONFIG_X86_64
 
6836         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
 
6837         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
 
6838         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
 
6840         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
 
6841         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
 
6842         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
 
6843         if (kvm_cstate_in_guest(vcpu->kvm)) {
 
6844                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
 
6845                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
 
6846                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
 
6847                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
 
6849         vmx->msr_bitmap_mode = 0;
 
6851         vmx->loaded_vmcs = &vmx->vmcs01;
 
6853         vmx_vcpu_load(vcpu, cpu);
 
6858         if (cpu_need_virtualize_apic_accesses(vcpu)) {
 
6859                 err = alloc_apic_access_page(vcpu->kvm);
 
6864         if (enable_ept && !enable_unrestricted_guest) {
 
6865                 err = init_rmode_identity_map(vcpu->kvm);
 
6871                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
 
6873                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
 
6875         vcpu_setup_sgx_lepubkeyhash(vcpu);
 
6877         vmx->nested.posted_intr_nv = -1;
 
6878         vmx->nested.current_vmptr = -1ull;
 
6879         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
 
6881         vcpu->arch.microcode_version = 0x100000000ULL;
 
6882         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
 
6885          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
 
6886          * or POSTED_INTR_WAKEUP_VECTOR.
 
6888         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
 
6889         vmx->pi_desc.sn = 1;
 
6894         free_loaded_vmcs(vmx->loaded_vmcs);
 
6896         vmx_destroy_pml_buffer(vmx);
 
6898         free_vpid(vmx->vpid);
 
6902 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
 
6903 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
 
6905 static int vmx_vm_init(struct kvm *kvm)
 
6908                 kvm->arch.pause_in_guest = true;
 
6910         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
 
6911                 switch (l1tf_mitigation) {
 
6912                 case L1TF_MITIGATION_OFF:
 
6913                 case L1TF_MITIGATION_FLUSH_NOWARN:
 
6914                         /* 'I explicitly don't care' is set */
 
6916                 case L1TF_MITIGATION_FLUSH:
 
6917                 case L1TF_MITIGATION_FLUSH_NOSMT:
 
6918                 case L1TF_MITIGATION_FULL:
 
6920                          * Warn upon starting the first VM in a potentially
 
6921                          * insecure environment.
 
6923                         if (sched_smt_active())
 
6924                                 pr_warn_once(L1TF_MSG_SMT);
 
6925                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
 
6926                                 pr_warn_once(L1TF_MSG_L1D);
 
6928                 case L1TF_MITIGATION_FULL_FORCE:
 
6929                         /* Flush is enforced */
 
6936 static int __init vmx_check_processor_compat(void)
 
6938         struct vmcs_config vmcs_conf;
 
6939         struct vmx_capability vmx_cap;
 
6941         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
 
6942             !this_cpu_has(X86_FEATURE_VMX)) {
 
6943                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
 
6947         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
 
6950                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
 
6951         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
 
6952                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
 
6953                                 smp_processor_id());
 
6959 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
 
6964         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
 
6965          * memory aliases with conflicting memory types and sometimes MCEs.
 
6966          * We have to be careful as to what are honored and when.
 
6968          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
 
6969          * UC.  The effective memory type is UC or WC depending on guest PAT.
 
6970          * This was historically the source of MCEs and we want to be
 
6973          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
 
6974          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
 
6975          * EPT memory type is set to WB.  The effective memory type is forced
 
6978          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
 
6979          * EPT memory type is used to emulate guest CD/MTRR.
 
6983                 cache = MTRR_TYPE_UNCACHABLE;
 
6987         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
 
6988                 ipat = VMX_EPT_IPAT_BIT;
 
6989                 cache = MTRR_TYPE_WRBACK;
 
6993         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
 
6994                 ipat = VMX_EPT_IPAT_BIT;
 
6995                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 
6996                         cache = MTRR_TYPE_WRBACK;
 
6998                         cache = MTRR_TYPE_UNCACHABLE;
 
7002         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
 
7005         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
 
7008 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
 
7011          * These bits in the secondary execution controls field
 
7012          * are dynamic, the others are mostly based on the hypervisor
 
7013          * architecture and the guest's CPUID.  Do not touch the
 
7017                 SECONDARY_EXEC_SHADOW_VMCS |
 
7018                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
 
7019                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
 
7020                 SECONDARY_EXEC_DESC;
 
7022         u32 new_ctl = vmx->secondary_exec_control;
 
7023         u32 cur_ctl = secondary_exec_controls_get(vmx);
 
7025         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
 
7029  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
 
7030  * (indicating "allowed-1") if they are supported in the guest's CPUID.
 
7032 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
 
7034         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
7035         struct kvm_cpuid_entry2 *entry;
 
7037         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
 
7038         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
 
7040 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
 
7041         if (entry && (entry->_reg & (_cpuid_mask)))                     \
 
7042                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
 
7045         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 
7046         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
 
7047         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
 
7048         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
 
7049         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
 
7050         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
 
7051         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
 
7052         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
 
7053         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
 
7054         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
 
7055         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
 
7056         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
 
7057         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
 
7058         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
 
7059         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
 
7061         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
 
7062         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
 
7063         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
 
7064         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
 
7065         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
 
7066         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
 
7067         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
 
7069 #undef cr4_fixed1_update
 
7072 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
 
7074         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
7076         if (kvm_mpx_supported()) {
 
7077                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
 
7080                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
 
7081                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
 
7083                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
 
7084                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
 
7089 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
 
7091         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
7092         struct kvm_cpuid_entry2 *best = NULL;
 
7095         for (i = 0; i < PT_CPUID_LEAVES; i++) {
 
7096                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
 
7099                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
 
7100                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
 
7101                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
 
7102                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
 
7105         /* Get the number of configurable Address Ranges for filtering */
 
7106         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
 
7107                                                 PT_CAP_num_address_ranges);
 
7109         /* Initialize and clear the no dependency bits */
 
7110         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
 
7111                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
 
7114          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
 
7115          * will inject an #GP
 
7117         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
 
7118                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
 
7121          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
 
7122          * PSBFreq can be set
 
7124         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
 
7125                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
 
7126                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
 
7129          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
 
7130          * MTCFreq can be set
 
7132         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
 
7133                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
 
7134                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
 
7136         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
 
7137         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
 
7138                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
 
7141         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
 
7142         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
 
7143                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
 
7145         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
 
7146         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
 
7147                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
 
7149         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
 
7150         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
 
7151                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
 
7153         /* unmask address range configure area */
 
7154         for (i = 0; i < vmx->pt_desc.addr_range; i++)
 
7155                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
 
7158 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 
7160         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
7162         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
 
7163         vcpu->arch.xsaves_enabled = false;
 
7165         if (cpu_has_secondary_exec_ctrls()) {
 
7166                 vmx_compute_secondary_exec_control(vmx);
 
7167                 vmcs_set_secondary_exec_control(vmx);
 
7170         if (nested_vmx_allowed(vcpu))
 
7171                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
 
7172                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
 
7173                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
 
7175                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
 
7176                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
 
7177                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
 
7179         if (nested_vmx_allowed(vcpu)) {
 
7180                 nested_vmx_cr_fixed1_bits_update(vcpu);
 
7181                 nested_vmx_entry_exit_ctls_update(vcpu);
 
7184         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
 
7185                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
 
7186                 update_intel_pt_cfg(vcpu);
 
7188         if (boot_cpu_has(X86_FEATURE_RTM)) {
 
7189                 struct vmx_uret_msr *msr;
 
7190                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
 
7192                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
 
7193                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
 
7197         set_cr4_guest_host_mask(vmx);
 
7199         vmx_write_encls_bitmap(vcpu, NULL);
 
7200         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
 
7201                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
 
7203                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
 
7205         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
 
7206                 vmx->msr_ia32_feature_control_valid_bits |=
 
7207                         FEAT_CTL_SGX_LC_ENABLED;
 
7209                 vmx->msr_ia32_feature_control_valid_bits &=
 
7210                         ~FEAT_CTL_SGX_LC_ENABLED;
 
7212         /* Refresh #PF interception to account for MAXPHYADDR changes. */
 
7213         vmx_update_exception_bitmap(vcpu);
 
7216 static __init void vmx_set_cpu_caps(void)
 
7222                 kvm_cpu_cap_set(X86_FEATURE_VMX);
 
7225         if (kvm_mpx_supported())
 
7226                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
 
7227         if (!cpu_has_vmx_invpcid())
 
7228                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
 
7229         if (vmx_pt_mode_is_host_guest())
 
7230                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
 
7233                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
 
7234                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
 
7235                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
 
7236                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
 
7239         if (vmx_umip_emulated())
 
7240                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
 
7244         if (!cpu_has_vmx_xsaves())
 
7245                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
 
7247         /* CPUID 0x80000001 and 0x7 (RDPID) */
 
7248         if (!cpu_has_vmx_rdtscp()) {
 
7249                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 
7250                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 
7253         if (cpu_has_vmx_waitpkg())
 
7254                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
 
7257 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
 
7259         to_vmx(vcpu)->req_immediate_exit = true;
 
7262 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
 
7263                                   struct x86_instruction_info *info)
 
7265         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 
7266         unsigned short port;
 
7270         if (info->intercept == x86_intercept_in ||
 
7271             info->intercept == x86_intercept_ins) {
 
7272                 port = info->src_val;
 
7273                 size = info->dst_bytes;
 
7275                 port = info->dst_val;
 
7276                 size = info->src_bytes;
 
7280          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
 
7281          * VM-exits depend on the 'unconditional IO exiting' VM-execution
 
7284          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
 
7286         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
 
7287                 intercept = nested_cpu_has(vmcs12,
 
7288                                            CPU_BASED_UNCOND_IO_EXITING);
 
7290                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
 
7292         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
 
7293         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
 
7296 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
 
7297                                struct x86_instruction_info *info,
 
7298                                enum x86_intercept_stage stage,
 
7299                                struct x86_exception *exception)
 
7301         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 
7303         switch (info->intercept) {
 
7305          * RDPID causes #UD if disabled through secondary execution controls.
 
7306          * Because it is marked as EmulateOnUD, we need to intercept it here.
 
7307          * Note, RDPID is hidden behind ENABLE_RDTSCP.
 
7309         case x86_intercept_rdpid:
 
7310                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
 
7311                         exception->vector = UD_VECTOR;
 
7312                         exception->error_code_valid = false;
 
7313                         return X86EMUL_PROPAGATE_FAULT;
 
7317         case x86_intercept_in:
 
7318         case x86_intercept_ins:
 
7319         case x86_intercept_out:
 
7320         case x86_intercept_outs:
 
7321                 return vmx_check_intercept_io(vcpu, info);
 
7323         case x86_intercept_lgdt:
 
7324         case x86_intercept_lidt:
 
7325         case x86_intercept_lldt:
 
7326         case x86_intercept_ltr:
 
7327         case x86_intercept_sgdt:
 
7328         case x86_intercept_sidt:
 
7329         case x86_intercept_sldt:
 
7330         case x86_intercept_str:
 
7331                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
 
7332                         return X86EMUL_CONTINUE;
 
7334                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
 
7337         /* TODO: check more intercepts... */
 
7342         return X86EMUL_UNHANDLEABLE;
 
7345 #ifdef CONFIG_X86_64
 
7346 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
 
7347 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
 
7348                                   u64 divisor, u64 *result)
 
7350         u64 low = a << shift, high = a >> (64 - shift);
 
7352         /* To avoid the overflow on divq */
 
7353         if (high >= divisor)
 
7356         /* Low hold the result, high hold rem which is discarded */
 
7357         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
 
7358             "rm" (divisor), "0" (low), "1" (high));
 
7364 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
 
7367         struct vcpu_vmx *vmx;
 
7368         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
 
7369         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
 
7373         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
 
7374         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
 
7375         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
 
7376                                                     ktimer->timer_advance_ns);
 
7378         if (delta_tsc > lapic_timer_advance_cycles)
 
7379                 delta_tsc -= lapic_timer_advance_cycles;
 
7383         /* Convert to host delta tsc if tsc scaling is enabled */
 
7384         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
 
7385             delta_tsc && u64_shl_div_u64(delta_tsc,
 
7386                                 kvm_tsc_scaling_ratio_frac_bits,
 
7387                                 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
 
7391          * If the delta tsc can't fit in the 32 bit after the multi shift,
 
7392          * we can't use the preemption timer.
 
7393          * It's possible that it fits on later vmentries, but checking
 
7394          * on every vmentry is costly so we just use an hrtimer.
 
7396         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
 
7399         vmx->hv_deadline_tsc = tscl + delta_tsc;
 
7400         *expired = !delta_tsc;
 
7404 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
 
7406         to_vmx(vcpu)->hv_deadline_tsc = -1;
 
7410 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
 
7412         if (!kvm_pause_in_guest(vcpu->kvm))
 
7413                 shrink_ple_window(vcpu);
 
7416 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
 
7418         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
7420         if (is_guest_mode(vcpu)) {
 
7421                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
 
7426          * Note, cpu_dirty_logging_count can be changed concurrent with this
 
7427          * code, but in that case another update request will be made and so
 
7428          * the guest will never run with a stale PML value.
 
7430         if (vcpu->kvm->arch.cpu_dirty_logging_count)
 
7431                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
 
7433                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
 
7436 static int vmx_pre_block(struct kvm_vcpu *vcpu)
 
7438         if (pi_pre_block(vcpu))
 
7441         if (kvm_lapic_hv_timer_in_use(vcpu))
 
7442                 kvm_lapic_switch_to_sw_timer(vcpu);
 
7447 static void vmx_post_block(struct kvm_vcpu *vcpu)
 
7449         if (kvm_x86_ops.set_hv_timer)
 
7450                 kvm_lapic_switch_to_hv_timer(vcpu);
 
7452         pi_post_block(vcpu);
 
7455 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
 
7457         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
 
7458                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
 
7459                         FEAT_CTL_LMCE_ENABLED;
 
7461                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
 
7462                         ~FEAT_CTL_LMCE_ENABLED;
 
7465 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
 
7467         /* we need a nested vmexit to enter SMM, postpone if run is pending */
 
7468         if (to_vmx(vcpu)->nested.nested_run_pending)
 
7470         return !is_smm(vcpu);
 
7473 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
 
7475         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
7477         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
 
7478         if (vmx->nested.smm.guest_mode)
 
7479                 nested_vmx_vmexit(vcpu, -1, 0, 0);
 
7481         vmx->nested.smm.vmxon = vmx->nested.vmxon;
 
7482         vmx->nested.vmxon = false;
 
7483         vmx_clear_hlt(vcpu);
 
7487 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
 
7489         struct vcpu_vmx *vmx = to_vmx(vcpu);
 
7492         if (vmx->nested.smm.vmxon) {
 
7493                 vmx->nested.vmxon = true;
 
7494                 vmx->nested.smm.vmxon = false;
 
7497         if (vmx->nested.smm.guest_mode) {
 
7498                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
 
7502                 vmx->nested.smm.guest_mode = false;
 
7507 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
 
7509         /* RSM will cause a vmexit anyway.  */
 
7512 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
 
7514         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
 
7517 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
 
7519         if (is_guest_mode(vcpu)) {
 
7520                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
 
7522                 if (hrtimer_try_to_cancel(timer) == 1)
 
7523                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 
7527 static void hardware_unsetup(void)
 
7530                 nested_vmx_hardware_unsetup();
 
7535 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
 
7537         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
 
7538                           BIT(APICV_INHIBIT_REASON_HYPERV);
 
7540         return supported & BIT(bit);
 
7543 static struct kvm_x86_ops vmx_x86_ops __initdata = {
 
7544         .hardware_unsetup = hardware_unsetup,
 
7546         .hardware_enable = hardware_enable,
 
7547         .hardware_disable = hardware_disable,
 
7548         .cpu_has_accelerated_tpr = report_flexpriority,
 
7549         .has_emulated_msr = vmx_has_emulated_msr,
 
7551         .vm_size = sizeof(struct kvm_vmx),
 
7552         .vm_init = vmx_vm_init,
 
7554         .vcpu_create = vmx_create_vcpu,
 
7555         .vcpu_free = vmx_free_vcpu,
 
7556         .vcpu_reset = vmx_vcpu_reset,
 
7558         .prepare_guest_switch = vmx_prepare_switch_to_guest,
 
7559         .vcpu_load = vmx_vcpu_load,
 
7560         .vcpu_put = vmx_vcpu_put,
 
7562         .update_exception_bitmap = vmx_update_exception_bitmap,
 
7563         .get_msr_feature = vmx_get_msr_feature,
 
7564         .get_msr = vmx_get_msr,
 
7565         .set_msr = vmx_set_msr,
 
7566         .get_segment_base = vmx_get_segment_base,
 
7567         .get_segment = vmx_get_segment,
 
7568         .set_segment = vmx_set_segment,
 
7569         .get_cpl = vmx_get_cpl,
 
7570         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
 
7571         .set_cr0 = vmx_set_cr0,
 
7572         .is_valid_cr4 = vmx_is_valid_cr4,
 
7573         .set_cr4 = vmx_set_cr4,
 
7574         .set_efer = vmx_set_efer,
 
7575         .get_idt = vmx_get_idt,
 
7576         .set_idt = vmx_set_idt,
 
7577         .get_gdt = vmx_get_gdt,
 
7578         .set_gdt = vmx_set_gdt,
 
7579         .set_dr7 = vmx_set_dr7,
 
7580         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
 
7581         .cache_reg = vmx_cache_reg,
 
7582         .get_rflags = vmx_get_rflags,
 
7583         .set_rflags = vmx_set_rflags,
 
7585         .tlb_flush_all = vmx_flush_tlb_all,
 
7586         .tlb_flush_current = vmx_flush_tlb_current,
 
7587         .tlb_flush_gva = vmx_flush_tlb_gva,
 
7588         .tlb_flush_guest = vmx_flush_tlb_guest,
 
7590         .run = vmx_vcpu_run,
 
7591         .handle_exit = vmx_handle_exit,
 
7592         .skip_emulated_instruction = vmx_skip_emulated_instruction,
 
7593         .update_emulated_instruction = vmx_update_emulated_instruction,
 
7594         .set_interrupt_shadow = vmx_set_interrupt_shadow,
 
7595         .get_interrupt_shadow = vmx_get_interrupt_shadow,
 
7596         .patch_hypercall = vmx_patch_hypercall,
 
7597         .set_irq = vmx_inject_irq,
 
7598         .set_nmi = vmx_inject_nmi,
 
7599         .queue_exception = vmx_queue_exception,
 
7600         .cancel_injection = vmx_cancel_injection,
 
7601         .interrupt_allowed = vmx_interrupt_allowed,
 
7602         .nmi_allowed = vmx_nmi_allowed,
 
7603         .get_nmi_mask = vmx_get_nmi_mask,
 
7604         .set_nmi_mask = vmx_set_nmi_mask,
 
7605         .enable_nmi_window = vmx_enable_nmi_window,
 
7606         .enable_irq_window = vmx_enable_irq_window,
 
7607         .update_cr8_intercept = vmx_update_cr8_intercept,
 
7608         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
 
7609         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
 
7610         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
 
7611         .load_eoi_exitmap = vmx_load_eoi_exitmap,
 
7612         .apicv_post_state_restore = vmx_apicv_post_state_restore,
 
7613         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
 
7614         .hwapic_irr_update = vmx_hwapic_irr_update,
 
7615         .hwapic_isr_update = vmx_hwapic_isr_update,
 
7616         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
 
7617         .sync_pir_to_irr = vmx_sync_pir_to_irr,
 
7618         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
 
7619         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
 
7621         .set_tss_addr = vmx_set_tss_addr,
 
7622         .set_identity_map_addr = vmx_set_identity_map_addr,
 
7623         .get_mt_mask = vmx_get_mt_mask,
 
7625         .get_exit_info = vmx_get_exit_info,
 
7627         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
 
7629         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
 
7631         .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
 
7632         .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
 
7633         .write_tsc_offset = vmx_write_tsc_offset,
 
7634         .write_tsc_multiplier = vmx_write_tsc_multiplier,
 
7636         .load_mmu_pgd = vmx_load_mmu_pgd,
 
7638         .check_intercept = vmx_check_intercept,
 
7639         .handle_exit_irqoff = vmx_handle_exit_irqoff,
 
7641         .request_immediate_exit = vmx_request_immediate_exit,
 
7643         .sched_in = vmx_sched_in,
 
7645         .cpu_dirty_log_size = PML_ENTITY_NUM,
 
7646         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
 
7648         .pre_block = vmx_pre_block,
 
7649         .post_block = vmx_post_block,
 
7651         .pmu_ops = &intel_pmu_ops,
 
7652         .nested_ops = &vmx_nested_ops,
 
7654         .update_pi_irte = pi_update_irte,
 
7655         .start_assignment = vmx_pi_start_assignment,
 
7657 #ifdef CONFIG_X86_64
 
7658         .set_hv_timer = vmx_set_hv_timer,
 
7659         .cancel_hv_timer = vmx_cancel_hv_timer,
 
7662         .setup_mce = vmx_setup_mce,
 
7664         .smi_allowed = vmx_smi_allowed,
 
7665         .enter_smm = vmx_enter_smm,
 
7666         .leave_smm = vmx_leave_smm,
 
7667         .enable_smi_window = vmx_enable_smi_window,
 
7669         .can_emulate_instruction = vmx_can_emulate_instruction,
 
7670         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
 
7671         .migrate_timers = vmx_migrate_timers,
 
7673         .msr_filter_changed = vmx_msr_filter_changed,
 
7674         .complete_emulated_msr = kvm_complete_insn_gp,
 
7676         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
 
7679 static __init void vmx_setup_user_return_msrs(void)
 
7683          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
 
7684          * will emulate SYSCALL in legacy mode if the vendor string in guest
 
7685          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
 
7686          * support this emulation, MSR_STAR is included in the list for i386,
 
7687          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
 
7688          * into hardware and is here purely for emulation purposes.
 
7690         const u32 vmx_uret_msrs_list[] = {
 
7691         #ifdef CONFIG_X86_64
 
7692                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 
7694                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 
7699         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
 
7701         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
 
7702                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
 
7705 static __init int hardware_setup(void)
 
7707         unsigned long host_bndcfgs;
 
7709         int r, ept_lpage_level;
 
7712         host_idt_base = dt.address;
 
7714         vmx_setup_user_return_msrs();
 
7716         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
 
7719         if (boot_cpu_has(X86_FEATURE_NX))
 
7720                 kvm_enable_efer_bits(EFER_NX);
 
7722         if (boot_cpu_has(X86_FEATURE_MPX)) {
 
7723                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
 
7724                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
 
7727         if (!cpu_has_vmx_mpx())
 
7728                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
 
7729                                     XFEATURE_MASK_BNDCSR);
 
7731         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
 
7732             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
 
7735         if (!cpu_has_vmx_ept() ||
 
7736             !cpu_has_vmx_ept_4levels() ||
 
7737             !cpu_has_vmx_ept_mt_wb() ||
 
7738             !cpu_has_vmx_invept_global())
 
7741         /* NX support is required for shadow paging. */
 
7742         if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
 
7743                 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
 
7747         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
 
7748                 enable_ept_ad_bits = 0;
 
7750         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
 
7751                 enable_unrestricted_guest = 0;
 
7753         if (!cpu_has_vmx_flexpriority())
 
7754                 flexpriority_enabled = 0;
 
7756         if (!cpu_has_virtual_nmis())
 
7760          * set_apic_access_page_addr() is used to reload apic access
 
7761          * page upon invalidation.  No need to do anything if not
 
7762          * using the APIC_ACCESS_ADDR VMCS field.
 
7764         if (!flexpriority_enabled)
 
7765                 vmx_x86_ops.set_apic_access_page_addr = NULL;
 
7767         if (!cpu_has_vmx_tpr_shadow())
 
7768                 vmx_x86_ops.update_cr8_intercept = NULL;
 
7770 #if IS_ENABLED(CONFIG_HYPERV)
 
7771         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
 
7773                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
 
7774                 vmx_x86_ops.tlb_remote_flush_with_range =
 
7775                                 hv_remote_flush_tlb_with_range;
 
7779         if (!cpu_has_vmx_ple()) {
 
7782                 ple_window_grow = 0;
 
7784                 ple_window_shrink = 0;
 
7787         if (!cpu_has_vmx_apicv()) {
 
7789                 vmx_x86_ops.sync_pir_to_irr = NULL;
 
7792         if (cpu_has_vmx_tsc_scaling()) {
 
7793                 kvm_has_tsc_control = true;
 
7794                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
 
7795                 kvm_tsc_scaling_ratio_frac_bits = 48;
 
7798         kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
 
7800         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
 
7803                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
 
7804                                       cpu_has_vmx_ept_execute_only());
 
7807                 ept_lpage_level = 0;
 
7808         else if (cpu_has_vmx_ept_1g_page())
 
7809                 ept_lpage_level = PG_LEVEL_1G;
 
7810         else if (cpu_has_vmx_ept_2m_page())
 
7811                 ept_lpage_level = PG_LEVEL_2M;
 
7813                 ept_lpage_level = PG_LEVEL_4K;
 
7814         kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
 
7817          * Only enable PML when hardware supports PML feature, and both EPT
 
7818          * and EPT A/D bit features are enabled -- PML depends on them to work.
 
7820         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
 
7824                 vmx_x86_ops.cpu_dirty_log_size = 0;
 
7826         if (!cpu_has_vmx_preemption_timer())
 
7827                 enable_preemption_timer = false;
 
7829         if (enable_preemption_timer) {
 
7830                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
 
7833                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
 
7834                 cpu_preemption_timer_multi =
 
7835                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
 
7838                         use_timer_freq = (u64)tsc_khz * 1000;
 
7839                 use_timer_freq >>= cpu_preemption_timer_multi;
 
7842                  * KVM "disables" the preemption timer by setting it to its max
 
7843                  * value.  Don't use the timer if it might cause spurious exits
 
7844                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
 
7846                 if (use_timer_freq > 0xffffffffu / 10)
 
7847                         enable_preemption_timer = false;
 
7850         if (!enable_preemption_timer) {
 
7851                 vmx_x86_ops.set_hv_timer = NULL;
 
7852                 vmx_x86_ops.cancel_hv_timer = NULL;
 
7853                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
 
7856         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
 
7858         kvm_mce_cap_supported |= MCG_LMCE_P;
 
7860         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
 
7862         if (!enable_ept || !cpu_has_vmx_intel_pt())
 
7863                 pt_mode = PT_MODE_SYSTEM;
 
7865         setup_default_sgx_lepubkeyhash();
 
7868                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
 
7869                                            vmx_capability.ept);
 
7871                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
 
7878         r = alloc_kvm_area();
 
7880                 nested_vmx_hardware_unsetup();
 
7884 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
 
7885         .cpu_has_kvm_support = cpu_has_kvm_support,
 
7886         .disabled_by_bios = vmx_disabled_by_bios,
 
7887         .check_processor_compatibility = vmx_check_processor_compat,
 
7888         .hardware_setup = hardware_setup,
 
7890         .runtime_ops = &vmx_x86_ops,
 
7893 static void vmx_cleanup_l1d_flush(void)
 
7895         if (vmx_l1d_flush_pages) {
 
7896                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
 
7897                 vmx_l1d_flush_pages = NULL;
 
7899         /* Restore state so sysfs ignores VMX */
 
7900         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
 
7903 static void vmx_exit(void)
 
7905 #ifdef CONFIG_KEXEC_CORE
 
7906         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
 
7912 #if IS_ENABLED(CONFIG_HYPERV)
 
7913         if (static_branch_unlikely(&enable_evmcs)) {
 
7915                 struct hv_vp_assist_page *vp_ap;
 
7917                  * Reset everything to support using non-enlightened VMCS
 
7918                  * access later (e.g. when we reload the module with
 
7919                  * enlightened_vmcs=0)
 
7921                 for_each_online_cpu(cpu) {
 
7922                         vp_ap = hv_get_vp_assist_page(cpu);
 
7927                         vp_ap->nested_control.features.directhypercall = 0;
 
7928                         vp_ap->current_nested_vmcs = 0;
 
7929                         vp_ap->enlighten_vmentry = 0;
 
7932                 static_branch_disable(&enable_evmcs);
 
7935         vmx_cleanup_l1d_flush();
 
7937         allow_smaller_maxphyaddr = false;
 
7939 module_exit(vmx_exit);
 
7941 static int __init vmx_init(void)
 
7945 #if IS_ENABLED(CONFIG_HYPERV)
 
7947          * Enlightened VMCS usage should be recommended and the host needs
 
7948          * to support eVMCS v1 or above. We can also disable eVMCS support
 
7949          * with module parameter.
 
7951         if (enlightened_vmcs &&
 
7952             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
 
7953             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
 
7954             KVM_EVMCS_VERSION) {
 
7957                 /* Check that we have assist pages on all online CPUs */
 
7958                 for_each_online_cpu(cpu) {
 
7959                         if (!hv_get_vp_assist_page(cpu)) {
 
7960                                 enlightened_vmcs = false;
 
7965                 if (enlightened_vmcs) {
 
7966                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
 
7967                         static_branch_enable(&enable_evmcs);
 
7970                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
 
7971                         vmx_x86_ops.enable_direct_tlbflush
 
7972                                 = hv_enable_direct_tlbflush;
 
7975                 enlightened_vmcs = false;
 
7979         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
 
7980                      __alignof__(struct vcpu_vmx), THIS_MODULE);
 
7985          * Must be called after kvm_init() so enable_ept is properly set
 
7986          * up. Hand the parameter mitigation value in which was stored in
 
7987          * the pre module init parser. If no parameter was given, it will
 
7988          * contain 'auto' which will be turned into the default 'cond'
 
7991         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
 
7997         for_each_possible_cpu(cpu) {
 
7998                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
 
8003 #ifdef CONFIG_KEXEC_CORE
 
8004         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
 
8005                            crash_vmclear_local_loaded_vmcss);
 
8007         vmx_check_vmcs12_offsets();
 
8010          * Shadow paging doesn't have a (further) performance penalty
 
8011          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
 
8015                 allow_smaller_maxphyaddr = true;
 
8019 module_init(vmx_init);