]> www.infradead.org Git - users/dwmw2/linux.git/blob
1427675
[users/dwmw2/linux.git] /
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31
32 #define MQD_SIZE_ALIGNED 768
33
34 /*
35  * kfd_locked is used to lock the kfd driver during suspend or reset
36  * once locked, kfd driver will stop any further GPU execution.
37  * create process (open) will return -EAGAIN.
38  */
39 static atomic_t kfd_locked = ATOMIC_INIT(0);
40
41 #ifdef KFD_SUPPORT_IOMMU_V2
42 static const struct kfd_device_info kaveri_device_info = {
43         .asic_family = CHIP_KAVERI,
44         .max_pasid_bits = 16,
45         /* max num of queues for KV.TODO should be a dynamic value */
46         .max_no_of_hqd  = 24,
47         .doorbell_size  = 4,
48         .ih_ring_entry_size = 4 * sizeof(uint32_t),
49         .event_interrupt_class = &event_interrupt_class_cik,
50         .num_of_watch_points = 4,
51         .mqd_size_aligned = MQD_SIZE_ALIGNED,
52         .supports_cwsr = false,
53         .needs_iommu_device = true,
54         .needs_pci_atomics = false,
55         .num_sdma_engines = 2,
56 };
57
58 static const struct kfd_device_info carrizo_device_info = {
59         .asic_family = CHIP_CARRIZO,
60         .max_pasid_bits = 16,
61         /* max num of queues for CZ.TODO should be a dynamic value */
62         .max_no_of_hqd  = 24,
63         .doorbell_size  = 4,
64         .ih_ring_entry_size = 4 * sizeof(uint32_t),
65         .event_interrupt_class = &event_interrupt_class_cik,
66         .num_of_watch_points = 4,
67         .mqd_size_aligned = MQD_SIZE_ALIGNED,
68         .supports_cwsr = true,
69         .needs_iommu_device = true,
70         .needs_pci_atomics = false,
71         .num_sdma_engines = 2,
72 };
73
74 static const struct kfd_device_info raven_device_info = {
75         .asic_family = CHIP_RAVEN,
76         .max_pasid_bits = 16,
77         .max_no_of_hqd  = 24,
78         .doorbell_size  = 8,
79         .ih_ring_entry_size = 8 * sizeof(uint32_t),
80         .event_interrupt_class = &event_interrupt_class_v9,
81         .num_of_watch_points = 4,
82         .mqd_size_aligned = MQD_SIZE_ALIGNED,
83         .supports_cwsr = true,
84         .needs_iommu_device = true,
85         .needs_pci_atomics = true,
86         .num_sdma_engines = 1,
87 };
88 #endif
89
90 static const struct kfd_device_info hawaii_device_info = {
91         .asic_family = CHIP_HAWAII,
92         .max_pasid_bits = 16,
93         /* max num of queues for KV.TODO should be a dynamic value */
94         .max_no_of_hqd  = 24,
95         .doorbell_size  = 4,
96         .ih_ring_entry_size = 4 * sizeof(uint32_t),
97         .event_interrupt_class = &event_interrupt_class_cik,
98         .num_of_watch_points = 4,
99         .mqd_size_aligned = MQD_SIZE_ALIGNED,
100         .supports_cwsr = false,
101         .needs_iommu_device = false,
102         .needs_pci_atomics = false,
103         .num_sdma_engines = 2,
104 };
105
106 static const struct kfd_device_info tonga_device_info = {
107         .asic_family = CHIP_TONGA,
108         .max_pasid_bits = 16,
109         .max_no_of_hqd  = 24,
110         .doorbell_size  = 4,
111         .ih_ring_entry_size = 4 * sizeof(uint32_t),
112         .event_interrupt_class = &event_interrupt_class_cik,
113         .num_of_watch_points = 4,
114         .mqd_size_aligned = MQD_SIZE_ALIGNED,
115         .supports_cwsr = false,
116         .needs_iommu_device = false,
117         .needs_pci_atomics = true,
118         .num_sdma_engines = 2,
119 };
120
121 static const struct kfd_device_info tonga_vf_device_info = {
122         .asic_family = CHIP_TONGA,
123         .max_pasid_bits = 16,
124         .max_no_of_hqd  = 24,
125         .doorbell_size  = 4,
126         .ih_ring_entry_size = 4 * sizeof(uint32_t),
127         .event_interrupt_class = &event_interrupt_class_cik,
128         .num_of_watch_points = 4,
129         .mqd_size_aligned = MQD_SIZE_ALIGNED,
130         .supports_cwsr = false,
131         .needs_iommu_device = false,
132         .needs_pci_atomics = false,
133         .num_sdma_engines = 2,
134 };
135
136 static const struct kfd_device_info fiji_device_info = {
137         .asic_family = CHIP_FIJI,
138         .max_pasid_bits = 16,
139         .max_no_of_hqd  = 24,
140         .doorbell_size  = 4,
141         .ih_ring_entry_size = 4 * sizeof(uint32_t),
142         .event_interrupt_class = &event_interrupt_class_cik,
143         .num_of_watch_points = 4,
144         .mqd_size_aligned = MQD_SIZE_ALIGNED,
145         .supports_cwsr = true,
146         .needs_iommu_device = false,
147         .needs_pci_atomics = true,
148         .num_sdma_engines = 2,
149 };
150
151 static const struct kfd_device_info fiji_vf_device_info = {
152         .asic_family = CHIP_FIJI,
153         .max_pasid_bits = 16,
154         .max_no_of_hqd  = 24,
155         .doorbell_size  = 4,
156         .ih_ring_entry_size = 4 * sizeof(uint32_t),
157         .event_interrupt_class = &event_interrupt_class_cik,
158         .num_of_watch_points = 4,
159         .mqd_size_aligned = MQD_SIZE_ALIGNED,
160         .supports_cwsr = true,
161         .needs_iommu_device = false,
162         .needs_pci_atomics = false,
163         .num_sdma_engines = 2,
164 };
165
166
167 static const struct kfd_device_info polaris10_device_info = {
168         .asic_family = CHIP_POLARIS10,
169         .max_pasid_bits = 16,
170         .max_no_of_hqd  = 24,
171         .doorbell_size  = 4,
172         .ih_ring_entry_size = 4 * sizeof(uint32_t),
173         .event_interrupt_class = &event_interrupt_class_cik,
174         .num_of_watch_points = 4,
175         .mqd_size_aligned = MQD_SIZE_ALIGNED,
176         .supports_cwsr = true,
177         .needs_iommu_device = false,
178         .needs_pci_atomics = true,
179         .num_sdma_engines = 2,
180 };
181
182 static const struct kfd_device_info polaris10_vf_device_info = {
183         .asic_family = CHIP_POLARIS10,
184         .max_pasid_bits = 16,
185         .max_no_of_hqd  = 24,
186         .doorbell_size  = 4,
187         .ih_ring_entry_size = 4 * sizeof(uint32_t),
188         .event_interrupt_class = &event_interrupt_class_cik,
189         .num_of_watch_points = 4,
190         .mqd_size_aligned = MQD_SIZE_ALIGNED,
191         .supports_cwsr = true,
192         .needs_iommu_device = false,
193         .needs_pci_atomics = false,
194         .num_sdma_engines = 2,
195 };
196
197 static const struct kfd_device_info polaris11_device_info = {
198         .asic_family = CHIP_POLARIS11,
199         .max_pasid_bits = 16,
200         .max_no_of_hqd  = 24,
201         .doorbell_size  = 4,
202         .ih_ring_entry_size = 4 * sizeof(uint32_t),
203         .event_interrupt_class = &event_interrupt_class_cik,
204         .num_of_watch_points = 4,
205         .mqd_size_aligned = MQD_SIZE_ALIGNED,
206         .supports_cwsr = true,
207         .needs_iommu_device = false,
208         .needs_pci_atomics = true,
209         .num_sdma_engines = 2,
210 };
211
212 static const struct kfd_device_info vega10_device_info = {
213         .asic_family = CHIP_VEGA10,
214         .max_pasid_bits = 16,
215         .max_no_of_hqd  = 24,
216         .doorbell_size  = 8,
217         .ih_ring_entry_size = 8 * sizeof(uint32_t),
218         .event_interrupt_class = &event_interrupt_class_v9,
219         .num_of_watch_points = 4,
220         .mqd_size_aligned = MQD_SIZE_ALIGNED,
221         .supports_cwsr = true,
222         .needs_iommu_device = false,
223         .needs_pci_atomics = false,
224         .num_sdma_engines = 2,
225 };
226
227 static const struct kfd_device_info vega10_vf_device_info = {
228         .asic_family = CHIP_VEGA10,
229         .max_pasid_bits = 16,
230         .max_no_of_hqd  = 24,
231         .doorbell_size  = 8,
232         .ih_ring_entry_size = 8 * sizeof(uint32_t),
233         .event_interrupt_class = &event_interrupt_class_v9,
234         .num_of_watch_points = 4,
235         .mqd_size_aligned = MQD_SIZE_ALIGNED,
236         .supports_cwsr = true,
237         .needs_iommu_device = false,
238         .needs_pci_atomics = false,
239         .num_sdma_engines = 2,
240 };
241
242
243 struct kfd_deviceid {
244         unsigned short did;
245         const struct kfd_device_info *device_info;
246 };
247
248 static const struct kfd_deviceid supported_devices[] = {
249 #ifdef KFD_SUPPORT_IOMMU_V2
250         { 0x1304, &kaveri_device_info },        /* Kaveri */
251         { 0x1305, &kaveri_device_info },        /* Kaveri */
252         { 0x1306, &kaveri_device_info },        /* Kaveri */
253         { 0x1307, &kaveri_device_info },        /* Kaveri */
254         { 0x1309, &kaveri_device_info },        /* Kaveri */
255         { 0x130A, &kaveri_device_info },        /* Kaveri */
256         { 0x130B, &kaveri_device_info },        /* Kaveri */
257         { 0x130C, &kaveri_device_info },        /* Kaveri */
258         { 0x130D, &kaveri_device_info },        /* Kaveri */
259         { 0x130E, &kaveri_device_info },        /* Kaveri */
260         { 0x130F, &kaveri_device_info },        /* Kaveri */
261         { 0x1310, &kaveri_device_info },        /* Kaveri */
262         { 0x1311, &kaveri_device_info },        /* Kaveri */
263         { 0x1312, &kaveri_device_info },        /* Kaveri */
264         { 0x1313, &kaveri_device_info },        /* Kaveri */
265         { 0x1315, &kaveri_device_info },        /* Kaveri */
266         { 0x1316, &kaveri_device_info },        /* Kaveri */
267         { 0x1317, &kaveri_device_info },        /* Kaveri */
268         { 0x1318, &kaveri_device_info },        /* Kaveri */
269         { 0x131B, &kaveri_device_info },        /* Kaveri */
270         { 0x131C, &kaveri_device_info },        /* Kaveri */
271         { 0x131D, &kaveri_device_info },        /* Kaveri */
272         { 0x9870, &carrizo_device_info },       /* Carrizo */
273         { 0x9874, &carrizo_device_info },       /* Carrizo */
274         { 0x9875, &carrizo_device_info },       /* Carrizo */
275         { 0x9876, &carrizo_device_info },       /* Carrizo */
276         { 0x9877, &carrizo_device_info },       /* Carrizo */
277         { 0x15DD, &raven_device_info },         /* Raven */
278 #endif
279         { 0x67A0, &hawaii_device_info },        /* Hawaii */
280         { 0x67A1, &hawaii_device_info },        /* Hawaii */
281         { 0x67A2, &hawaii_device_info },        /* Hawaii */
282         { 0x67A8, &hawaii_device_info },        /* Hawaii */
283         { 0x67A9, &hawaii_device_info },        /* Hawaii */
284         { 0x67AA, &hawaii_device_info },        /* Hawaii */
285         { 0x67B0, &hawaii_device_info },        /* Hawaii */
286         { 0x67B1, &hawaii_device_info },        /* Hawaii */
287         { 0x67B8, &hawaii_device_info },        /* Hawaii */
288         { 0x67B9, &hawaii_device_info },        /* Hawaii */
289         { 0x67BA, &hawaii_device_info },        /* Hawaii */
290         { 0x67BE, &hawaii_device_info },        /* Hawaii */
291         { 0x6920, &tonga_device_info },         /* Tonga */
292         { 0x6921, &tonga_device_info },         /* Tonga */
293         { 0x6928, &tonga_device_info },         /* Tonga */
294         { 0x6929, &tonga_device_info },         /* Tonga */
295         { 0x692B, &tonga_device_info },         /* Tonga */
296         { 0x692F, &tonga_vf_device_info },      /* Tonga vf */
297         { 0x6938, &tonga_device_info },         /* Tonga */
298         { 0x6939, &tonga_device_info },         /* Tonga */
299         { 0x7300, &fiji_device_info },          /* Fiji */
300         { 0x730F, &fiji_vf_device_info },       /* Fiji vf*/
301         { 0x67C0, &polaris10_device_info },     /* Polaris10 */
302         { 0x67C1, &polaris10_device_info },     /* Polaris10 */
303         { 0x67C2, &polaris10_device_info },     /* Polaris10 */
304         { 0x67C4, &polaris10_device_info },     /* Polaris10 */
305         { 0x67C7, &polaris10_device_info },     /* Polaris10 */
306         { 0x67C8, &polaris10_device_info },     /* Polaris10 */
307         { 0x67C9, &polaris10_device_info },     /* Polaris10 */
308         { 0x67CA, &polaris10_device_info },     /* Polaris10 */
309         { 0x67CC, &polaris10_device_info },     /* Polaris10 */
310         { 0x67CF, &polaris10_device_info },     /* Polaris10 */
311         { 0x67D0, &polaris10_vf_device_info },  /* Polaris10 vf*/
312         { 0x67DF, &polaris10_device_info },     /* Polaris10 */
313         { 0x67E0, &polaris11_device_info },     /* Polaris11 */
314         { 0x67E1, &polaris11_device_info },     /* Polaris11 */
315         { 0x67E3, &polaris11_device_info },     /* Polaris11 */
316         { 0x67E7, &polaris11_device_info },     /* Polaris11 */
317         { 0x67E8, &polaris11_device_info },     /* Polaris11 */
318         { 0x67E9, &polaris11_device_info },     /* Polaris11 */
319         { 0x67EB, &polaris11_device_info },     /* Polaris11 */
320         { 0x67EF, &polaris11_device_info },     /* Polaris11 */
321         { 0x67FF, &polaris11_device_info },     /* Polaris11 */
322         { 0x6860, &vega10_device_info },        /* Vega10 */
323         { 0x6861, &vega10_device_info },        /* Vega10 */
324         { 0x6862, &vega10_device_info },        /* Vega10 */
325         { 0x6863, &vega10_device_info },        /* Vega10 */
326         { 0x6864, &vega10_device_info },        /* Vega10 */
327         { 0x6867, &vega10_device_info },        /* Vega10 */
328         { 0x6868, &vega10_device_info },        /* Vega10 */
329         { 0x6869, &vega10_device_info },        /* Vega10 */
330         { 0x686A, &vega10_device_info },        /* Vega10 */
331         { 0x686B, &vega10_device_info },        /* Vega10 */
332         { 0x686C, &vega10_vf_device_info },     /* Vega10  vf*/
333         { 0x686D, &vega10_device_info },        /* Vega10 */
334         { 0x686E, &vega10_device_info },        /* Vega10 */
335         { 0x686F, &vega10_device_info },        /* Vega10 */
336         { 0x687F, &vega10_device_info },        /* Vega10 */
337 };
338
339 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
340                                 unsigned int chunk_size);
341 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
342
343 static int kfd_resume(struct kfd_dev *kfd);
344
345 static const struct kfd_device_info *lookup_device_info(unsigned short did)
346 {
347         size_t i;
348
349         for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
350                 if (supported_devices[i].did == did) {
351                         WARN_ON(!supported_devices[i].device_info);
352                         return supported_devices[i].device_info;
353                 }
354         }
355
356         dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
357                  did);
358
359         return NULL;
360 }
361
362 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
363         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
364 {
365         struct kfd_dev *kfd;
366         int ret;
367         const struct kfd_device_info *device_info =
368                                         lookup_device_info(pdev->device);
369
370         if (!device_info) {
371                 dev_err(kfd_device, "kgd2kfd_probe failed\n");
372                 return NULL;
373         }
374
375         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
376          * 32 and 64-bit requests are possible and must be
377          * supported.
378          */
379         ret = pci_enable_atomic_ops_to_root(pdev,
380                         PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
381                         PCI_EXP_DEVCAP2_ATOMIC_COMP64);
382         if (device_info->needs_pci_atomics && ret < 0) {
383                 dev_info(kfd_device,
384                          "skipped device %x:%x, PCI rejects atomics\n",
385                          pdev->vendor, pdev->device);
386                 return NULL;
387         }
388
389         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
390         if (!kfd)
391                 return NULL;
392
393         kfd->kgd = kgd;
394         kfd->device_info = device_info;
395         kfd->pdev = pdev;
396         kfd->init_complete = false;
397         kfd->kfd2kgd = f2g;
398
399         mutex_init(&kfd->doorbell_mutex);
400         memset(&kfd->doorbell_available_index, 0,
401                 sizeof(kfd->doorbell_available_index));
402
403         return kfd;
404 }
405
406 static void kfd_cwsr_init(struct kfd_dev *kfd)
407 {
408         if (cwsr_enable && kfd->device_info->supports_cwsr) {
409                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
410                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
411                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
412                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
413                 } else {
414                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
415                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
416                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
417                 }
418
419                 kfd->cwsr_enabled = true;
420         }
421 }
422
423 bool kgd2kfd_device_init(struct kfd_dev *kfd,
424                          const struct kgd2kfd_shared_resources *gpu_resources)
425 {
426         unsigned int size;
427
428         kfd->shared_resources = *gpu_resources;
429
430         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
431         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
432         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
433                         - kfd->vm_info.first_vmid_kfd + 1;
434
435         /* Verify module parameters regarding mapped process number*/
436         if ((hws_max_conc_proc < 0)
437                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
438                 dev_err(kfd_device,
439                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
440                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
441                         kfd->vm_info.vmid_num_kfd);
442                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
443         } else
444                 kfd->max_proc_per_quantum = hws_max_conc_proc;
445
446         /* calculate max size of mqds needed for queues */
447         size = max_num_of_queues_per_device *
448                         kfd->device_info->mqd_size_aligned;
449
450         /*
451          * calculate max size of runlist packet.
452          * There can be only 2 packets at once
453          */
454         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
455                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
456                 + sizeof(struct pm4_mes_runlist)) * 2;
457
458         /* Add size of HIQ & DIQ */
459         size += KFD_KERNEL_QUEUE_SIZE * 2;
460
461         /* add another 512KB for all other allocations on gart (HPD, fences) */
462         size += 512 * 1024;
463
464         if (kfd->kfd2kgd->init_gtt_mem_allocation(
465                         kfd->kgd, size, &kfd->gtt_mem,
466                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
467                         false)) {
468                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
469                 goto out;
470         }
471
472         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
473
474         /* Initialize GTT sa with 512 byte chunk size */
475         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
476                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
477                 goto kfd_gtt_sa_init_error;
478         }
479
480         if (kfd_doorbell_init(kfd)) {
481                 dev_err(kfd_device,
482                         "Error initializing doorbell aperture\n");
483                 goto kfd_doorbell_error;
484         }
485
486         if (kfd_topology_add_device(kfd)) {
487                 dev_err(kfd_device, "Error adding device to topology\n");
488                 goto kfd_topology_add_device_error;
489         }
490
491         if (kfd_interrupt_init(kfd)) {
492                 dev_err(kfd_device, "Error initializing interrupts\n");
493                 goto kfd_interrupt_error;
494         }
495
496         kfd->dqm = device_queue_manager_init(kfd);
497         if (!kfd->dqm) {
498                 dev_err(kfd_device, "Error initializing queue manager\n");
499                 goto device_queue_manager_error;
500         }
501
502         if (kfd_iommu_device_init(kfd)) {
503                 dev_err(kfd_device, "Error initializing iommuv2\n");
504                 goto device_iommu_error;
505         }
506
507         kfd_cwsr_init(kfd);
508
509         if (kfd_resume(kfd))
510                 goto kfd_resume_error;
511
512         kfd->dbgmgr = NULL;
513
514         kfd->init_complete = true;
515         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
516                  kfd->pdev->device);
517
518         pr_debug("Starting kfd with the following scheduling policy %d\n",
519                 kfd->dqm->sched_policy);
520
521         goto out;
522
523 kfd_resume_error:
524 device_iommu_error:
525         device_queue_manager_uninit(kfd->dqm);
526 device_queue_manager_error:
527         kfd_interrupt_exit(kfd);
528 kfd_interrupt_error:
529         kfd_topology_remove_device(kfd);
530 kfd_topology_add_device_error:
531         kfd_doorbell_fini(kfd);
532 kfd_doorbell_error:
533         kfd_gtt_sa_fini(kfd);
534 kfd_gtt_sa_init_error:
535         kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
536         dev_err(kfd_device,
537                 "device %x:%x NOT added due to errors\n",
538                 kfd->pdev->vendor, kfd->pdev->device);
539 out:
540         return kfd->init_complete;
541 }
542
543 void kgd2kfd_device_exit(struct kfd_dev *kfd)
544 {
545         if (kfd->init_complete) {
546                 kgd2kfd_suspend(kfd);
547                 device_queue_manager_uninit(kfd->dqm);
548                 kfd_interrupt_exit(kfd);
549                 kfd_topology_remove_device(kfd);
550                 kfd_doorbell_fini(kfd);
551                 kfd_gtt_sa_fini(kfd);
552                 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
553         }
554
555         kfree(kfd);
556 }
557
558 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
559 {
560         if (!kfd->init_complete)
561                 return 0;
562         kgd2kfd_suspend(kfd);
563
564         /* hold dqm->lock to prevent further execution*/
565         dqm_lock(kfd->dqm);
566
567         kfd_signal_reset_event(kfd);
568         return 0;
569 }
570
571 /*
572  * Fix me. KFD won't be able to resume existing process for now.
573  * We will keep all existing process in a evicted state and
574  * wait the process to be terminated.
575  */
576
577 int kgd2kfd_post_reset(struct kfd_dev *kfd)
578 {
579         int ret, count;
580
581         if (!kfd->init_complete)
582                 return 0;
583
584         dqm_unlock(kfd->dqm);
585
586         ret = kfd_resume(kfd);
587         if (ret)
588                 return ret;
589         count = atomic_dec_return(&kfd_locked);
590         WARN_ONCE(count != 0, "KFD reset ref. error");
591         return 0;
592 }
593
594 bool kfd_is_locked(void)
595 {
596         return  (atomic_read(&kfd_locked) > 0);
597 }
598
599 void kgd2kfd_suspend(struct kfd_dev *kfd)
600 {
601         if (!kfd->init_complete)
602                 return;
603
604         /* For first KFD device suspend all the KFD processes */
605         if (atomic_inc_return(&kfd_locked) == 1)
606                 kfd_suspend_all_processes();
607
608         kfd->dqm->ops.stop(kfd->dqm);
609
610         kfd_iommu_suspend(kfd);
611 }
612
613 int kgd2kfd_resume(struct kfd_dev *kfd)
614 {
615         int ret, count;
616
617         if (!kfd->init_complete)
618                 return 0;
619
620         ret = kfd_resume(kfd);
621         if (ret)
622                 return ret;
623
624         count = atomic_dec_return(&kfd_locked);
625         WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
626         if (count == 0)
627                 ret = kfd_resume_all_processes();
628
629         return ret;
630 }
631
632 static int kfd_resume(struct kfd_dev *kfd)
633 {
634         int err = 0;
635
636         err = kfd_iommu_resume(kfd);
637         if (err) {
638                 dev_err(kfd_device,
639                         "Failed to resume IOMMU for device %x:%x\n",
640                         kfd->pdev->vendor, kfd->pdev->device);
641                 return err;
642         }
643
644         err = kfd->dqm->ops.start(kfd->dqm);
645         if (err) {
646                 dev_err(kfd_device,
647                         "Error starting queue manager for device %x:%x\n",
648                         kfd->pdev->vendor, kfd->pdev->device);
649                 goto dqm_start_error;
650         }
651
652         return err;
653
654 dqm_start_error:
655         kfd_iommu_suspend(kfd);
656         return err;
657 }
658
659 /* This is called directly from KGD at ISR. */
660 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
661 {
662         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
663         bool is_patched = false;
664
665         if (!kfd->init_complete)
666                 return;
667
668         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
669                 dev_err_once(kfd_device, "Ring entry too small\n");
670                 return;
671         }
672
673         spin_lock(&kfd->interrupt_lock);
674
675         if (kfd->interrupts_active
676             && interrupt_is_wanted(kfd, ih_ring_entry,
677                                    patched_ihre, &is_patched)
678             && enqueue_ih_ring_entry(kfd,
679                                      is_patched ? patched_ihre : ih_ring_entry))
680                 queue_work(kfd->ih_wq, &kfd->interrupt_work);
681
682         spin_unlock(&kfd->interrupt_lock);
683 }
684
685 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
686 {
687         struct kfd_process *p;
688         int r;
689
690         /* Because we are called from arbitrary context (workqueue) as opposed
691          * to process context, kfd_process could attempt to exit while we are
692          * running so the lookup function increments the process ref count.
693          */
694         p = kfd_lookup_process_by_mm(mm);
695         if (!p)
696                 return -ESRCH;
697
698         r = kfd_process_evict_queues(p);
699
700         kfd_unref_process(p);
701         return r;
702 }
703
704 int kgd2kfd_resume_mm(struct mm_struct *mm)
705 {
706         struct kfd_process *p;
707         int r;
708
709         /* Because we are called from arbitrary context (workqueue) as opposed
710          * to process context, kfd_process could attempt to exit while we are
711          * running so the lookup function increments the process ref count.
712          */
713         p = kfd_lookup_process_by_mm(mm);
714         if (!p)
715                 return -ESRCH;
716
717         r = kfd_process_restore_queues(p);
718
719         kfd_unref_process(p);
720         return r;
721 }
722
723 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
724  *   prepare for safe eviction of KFD BOs that belong to the specified
725  *   process.
726  *
727  * @mm: mm_struct that identifies the specified KFD process
728  * @fence: eviction fence attached to KFD process BOs
729  *
730  */
731 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
732                                                struct dma_fence *fence)
733 {
734         struct kfd_process *p;
735         unsigned long active_time;
736         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
737
738         if (!fence)
739                 return -EINVAL;
740
741         if (dma_fence_is_signaled(fence))
742                 return 0;
743
744         p = kfd_lookup_process_by_mm(mm);
745         if (!p)
746                 return -ENODEV;
747
748         if (fence->seqno == p->last_eviction_seqno)
749                 goto out;
750
751         p->last_eviction_seqno = fence->seqno;
752
753         /* Avoid KFD process starvation. Wait for at least
754          * PROCESS_ACTIVE_TIME_MS before evicting the process again
755          */
756         active_time = get_jiffies_64() - p->last_restore_timestamp;
757         if (delay_jiffies > active_time)
758                 delay_jiffies -= active_time;
759         else
760                 delay_jiffies = 0;
761
762         /* During process initialization eviction_work.dwork is initialized
763          * to kfd_evict_bo_worker
764          */
765         schedule_delayed_work(&p->eviction_work, delay_jiffies);
766 out:
767         kfd_unref_process(p);
768         return 0;
769 }
770
771 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
772                                 unsigned int chunk_size)
773 {
774         unsigned int num_of_longs;
775
776         if (WARN_ON(buf_size < chunk_size))
777                 return -EINVAL;
778         if (WARN_ON(buf_size == 0))
779                 return -EINVAL;
780         if (WARN_ON(chunk_size == 0))
781                 return -EINVAL;
782
783         kfd->gtt_sa_chunk_size = chunk_size;
784         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
785
786         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
787                 BITS_PER_LONG;
788
789         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
790
791         if (!kfd->gtt_sa_bitmap)
792                 return -ENOMEM;
793
794         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
795                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
796
797         mutex_init(&kfd->gtt_sa_lock);
798
799         return 0;
800
801 }
802
803 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
804 {
805         mutex_destroy(&kfd->gtt_sa_lock);
806         kfree(kfd->gtt_sa_bitmap);
807 }
808
809 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
810                                                 unsigned int bit_num,
811                                                 unsigned int chunk_size)
812 {
813         return start_addr + bit_num * chunk_size;
814 }
815
816 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
817                                                 unsigned int bit_num,
818                                                 unsigned int chunk_size)
819 {
820         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
821 }
822
823 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
824                         struct kfd_mem_obj **mem_obj)
825 {
826         unsigned int found, start_search, cur_size;
827
828         if (size == 0)
829                 return -EINVAL;
830
831         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
832                 return -ENOMEM;
833
834         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
835         if (!(*mem_obj))
836                 return -ENOMEM;
837
838         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
839
840         start_search = 0;
841
842         mutex_lock(&kfd->gtt_sa_lock);
843
844 kfd_gtt_restart_search:
845         /* Find the first chunk that is free */
846         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
847                                         kfd->gtt_sa_num_of_chunks,
848                                         start_search);
849
850         pr_debug("Found = %d\n", found);
851
852         /* If there wasn't any free chunk, bail out */
853         if (found == kfd->gtt_sa_num_of_chunks)
854                 goto kfd_gtt_no_free_chunk;
855
856         /* Update fields of mem_obj */
857         (*mem_obj)->range_start = found;
858         (*mem_obj)->range_end = found;
859         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
860                                         kfd->gtt_start_gpu_addr,
861                                         found,
862                                         kfd->gtt_sa_chunk_size);
863         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
864                                         kfd->gtt_start_cpu_ptr,
865                                         found,
866                                         kfd->gtt_sa_chunk_size);
867
868         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
869                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
870
871         /* If we need only one chunk, mark it as allocated and get out */
872         if (size <= kfd->gtt_sa_chunk_size) {
873                 pr_debug("Single bit\n");
874                 set_bit(found, kfd->gtt_sa_bitmap);
875                 goto kfd_gtt_out;
876         }
877
878         /* Otherwise, try to see if we have enough contiguous chunks */
879         cur_size = size - kfd->gtt_sa_chunk_size;
880         do {
881                 (*mem_obj)->range_end =
882                         find_next_zero_bit(kfd->gtt_sa_bitmap,
883                                         kfd->gtt_sa_num_of_chunks, ++found);
884                 /*
885                  * If next free chunk is not contiguous than we need to
886                  * restart our search from the last free chunk we found (which
887                  * wasn't contiguous to the previous ones
888                  */
889                 if ((*mem_obj)->range_end != found) {
890                         start_search = found;
891                         goto kfd_gtt_restart_search;
892                 }
893
894                 /*
895                  * If we reached end of buffer, bail out with error
896                  */
897                 if (found == kfd->gtt_sa_num_of_chunks)
898                         goto kfd_gtt_no_free_chunk;
899
900                 /* Check if we don't need another chunk */
901                 if (cur_size <= kfd->gtt_sa_chunk_size)
902                         cur_size = 0;
903                 else
904                         cur_size -= kfd->gtt_sa_chunk_size;
905
906         } while (cur_size > 0);
907
908         pr_debug("range_start = %d, range_end = %d\n",
909                 (*mem_obj)->range_start, (*mem_obj)->range_end);
910
911         /* Mark the chunks as allocated */
912         for (found = (*mem_obj)->range_start;
913                 found <= (*mem_obj)->range_end;
914                 found++)
915                 set_bit(found, kfd->gtt_sa_bitmap);
916
917 kfd_gtt_out:
918         mutex_unlock(&kfd->gtt_sa_lock);
919         return 0;
920
921 kfd_gtt_no_free_chunk:
922         pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
923         mutex_unlock(&kfd->gtt_sa_lock);
924         kfree(mem_obj);
925         return -ENOMEM;
926 }
927
928 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
929 {
930         unsigned int bit;
931
932         /* Act like kfree when trying to free a NULL object */
933         if (!mem_obj)
934                 return 0;
935
936         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
937                         mem_obj, mem_obj->range_start, mem_obj->range_end);
938
939         mutex_lock(&kfd->gtt_sa_lock);
940
941         /* Mark the chunks as free */
942         for (bit = mem_obj->range_start;
943                 bit <= mem_obj->range_end;
944                 bit++)
945                 clear_bit(bit, kfd->gtt_sa_bitmap);
946
947         mutex_unlock(&kfd->gtt_sa_lock);
948
949         kfree(mem_obj);
950         return 0;
951 }
952
953 #if defined(CONFIG_DEBUG_FS)
954
955 /* This function will send a package to HIQ to hang the HWS
956  * which will trigger a GPU reset and bring the HWS back to normal state
957  */
958 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
959 {
960         int r = 0;
961
962         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
963                 pr_err("HWS is not enabled");
964                 return -EINVAL;
965         }
966
967         r = pm_debugfs_hang_hws(&dev->dqm->packets);
968         if (!r)
969                 r = dqm_debugfs_execute_queues(dev->dqm);
970
971         return r;
972 }
973
974 #endif