There have been multiple reports of crashes that look like
kernel: RIP: 0010:[<ffffffff8110303f>] timecounter_read+0xf/0x50
[...]
kernel: Call Trace:
kernel: [<ffffffffa0806b0f>] e1000e_phc_gettime+0x2f/0x60 [e1000e]
kernel: [<ffffffffa0806c5d>] e1000e_systim_overflow_work+0x1d/0x80 [e1000e]
kernel: [<ffffffff810992c5>] process_one_work+0x155/0x440
kernel: [<ffffffff81099e16>] worker_thread+0x116/0x4b0
kernel: [<ffffffff8109f422>] kthread+0xd2/0xf0
kernel: [<ffffffff8163184f>] ret_from_fork+0x3f/0x70
These can be traced back to the fact that e1000e_systim_reset() skips the
timecounter_init() call if e1000e_get_base_timinca() returns -EINVAL, which
leads to a null deref in timecounter_read().
Commit 83129b37ef35 ("e1000e: fix systim issues", v4.2-rc1) reworked
e1000e_get_base_timinca() in such a way that it can return -EINVAL for
e1000_pch_spt if the SYSCFI bit is not set in TSYNCRXCTL.
Some experimentation has shown that on I219 (e1000_pch_spt, "MAC: 12")
adapters, the E1000_TSYNCRXCTL_SYSCFI flag is unstable; TSYNCRXCTL reads
sometimes don't have the SYSCFI bit set. Retrying the read shortly after
finds the bit to be set. This was observed at boot (probe) but also link up
and link down.
Moreover, the phc (PTP Hardware Clock) seems to operate normally even after
reads where SYSCFI=0. Therefore, remove this register read and
unconditionally set the clock parameters.
The names for BPF_ALU64 | BPF_ARSH are emit_a32_arsh_*,
the names for BPF_ALU64 | BPF_LSH are emit_a32_lsh_*, but
the names for BPF_ALU64 | BPF_RSH are emit_a32_lsr_*.
For consistence reason, let's rename emit_a32_lsr_* to
emit_a32_rsh_*.
Drop the in_nmi() check from printk_safe_flush_on_panic()
and attempt to re-init (IOW unlock) locked logbuf spinlock
from panic CPU regardless of its context.
Otherwise, theoretically, we can deadlock on logbuf trying to flush
per-CPU buffers:
a) Panic CPU is running in non-NMI context
b) Panic CPU sends out shutdown IPI via reboot vector
c) Panic CPU fails to stop all remote CPUs
d) Panic CPU sends out shutdown IPI via NMI vector
One of the CPUs that we bring down via NMI vector can hold
logbuf spin lock (theoretically).
Link: http://lkml.kernel.org/r/20180530070350.10131-1-sergey.senozhatsky@gmail.com
To: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The DA9063 watchdog has only one register field to store the timeout value
and to enable the watchdog. The watchdog gets enabled if the value is
not zero. There is no issue if the watchdog is already running but it
leads into problems if the watchdog is disabled.
If the watchdog is disabled and only the timeout value should be prepared
the watchdog gets enabled too. Add a check to get the current watchdog
state and update the watchdog timeout value on hw-side only if the
watchdog is already active.
When listing sets with timeout support, there's a probability that
just timing out entries with "0" timeout value is listed/saved.
However when restoring the saved list, the zero timeout value means
permanent elelements.
The new behaviour is that timing out entries are listed with "timeout 1"
instead of zero.
Userspace `ipset` command forbids family option for hash:mac type:
ipset create test hash:mac family inet4
ipset v6.30: Unknown argument: `family'
However, this check is not done in kernel itself. When someone use
external netlink applications (pyroute2 python library for example), one
can create hash:mac with invalid family and inconsistant results from
userspace (`ipset` command cannot read set content anymore).
This patch enforce the logic in kernel, and forbids insertion of
hash:mac with a family set.
Since IP_SET_PROTO_UNDEF is defined only for hash:mac, this patch has no
impact on other hash:* sets
The reason is that the event_pmu is too strong
and match also single string. Changing it to
force the '/' separators to be part of the rule,
and getting the proper error now:
$ perf stat -e inst kill
event syntax error: 'inst'
\___ parser error
Run 'perf list' for a list of valid events
...
Suggested-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20180605121416.31645-1-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When using RTC_ALM_SET or RTC_WKALM_SET with rtc_wkalrm.enabled not set,
rtc_timer_enqueue() is not called and rtc_set_alarm() may succeed but the
subsequent RTC_AIE_ON ioctl will fail. RTC_ALM_READ would also fail in that
case.
Ensure rtc_set_alarm() fails when alarms are not supported to avoid letting
programs think the alarms are working for a particular RTC when they are
not.
Currently, __vunmap flow is,
1) Release the VM area
2) Free the debug objects corresponding to that vm area.
This leave some race window open.
1) Release the VM area
1.5) Some other client gets the same vm area
1.6) This client allocates new debug objects on the same
vm area
2) Free the debug objects corresponding to this vm area.
Here, we actually free 'other' client's debug objects.
Fix this by freeing the debug objects first and then releasing the VM
area.
In commit ab676b7d6fbf ("pagemap: do not leak physical addresses to
non-privileged userspace"), the /proc/PID/pagemap is restricted to be
readable only by CAP_SYS_ADMIN to address some security issue.
In commit 1c90308e7a77 ("pagemap: hide physical addresses from
non-privileged users"), the restriction is relieved to make
/proc/PID/pagemap readable, but hide the physical addresses for
non-privileged users.
But the swap entries are readable for non-privileged users too. This
has some security issues. For example, for page under migrating, the
swap entry has physical address information. So, in this patch, the
swap entries are hided for non-privileged users too.
Link: http://lkml.kernel.org/r/20180508012745.7238-1-ying.huang@intel.com Fixes: 1c90308e7a77 ("pagemap: hide physical addresses from non-privileged users") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Andrei Vagin <avagin@openvz.org> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Daniel Colascione <dancol@google.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When reporting an AB-BA deadlock like shown above, it would be nice if
trace of PID=6541 is printed as well as trace of PID=6540 before calling
panic().
Showing hung tasks up to /proc/sys/kernel/hung_task_warnings could delay
calling panic() but normally there should not be so many hung tasks.
MAP_DMA ioctls might be called from various threads within a process,
for example when using QEMU, the vCPU threads are often generating
these calls and we therefore take a reference to that vCPU task.
However, QEMU also supports vCPU hotplug on some machines and the task
that called MAP_DMA may have exited by the time UNMAP_DMA is called,
resulting in the mm_struct pointer being NULL and thus a failure to
match against the existing mapping.
To resolve this, we instead take a reference to the thread
group_leader, which has the same mm_struct and resource limits, but
is less likely exit, at least in the QEMU case. A difficulty here is
guaranteeing that the capabilities of the group_leader match that of
the calling thread, which we resolve by tracking CAP_IPC_LOCK at the
time of calling rather than at an indeterminate time in the future.
Potentially this also results in better efficiency as this is now
recorded once per MAP_DMA ioctl.
When we create an mdev device, we check for duplicates against the
parent device and return -EEXIST if found, but the mdev device
namespace is global since we'll link all devices from the bus. We do
catch this later in sysfs_do_create_link_sd() to return -EEXIST, but
with it comes a kernel warning and stack trace for trying to create
duplicate sysfs links, which makes it an undesirable response.
Therefore we should really be looking for duplicates across all mdev
parent devices, or as implemented here, against our mdev device list.
Using mdev_list to prevent duplicates means that we can remove
mdev_parent.lock, but in order not to serialize mdev device creation
and removal globally, we add mdev_device.active which allows UUIDs to
be reserved such that we can drop the mdev_list_lock before the mdev
device is fully in place.
Two behavioral notes; first, mdev_parent.lock had the side-effect of
serializing mdev create and remove ops per parent device. This was
an implementation detail, not an intentional guarantee provided to
the mdev vendor drivers. Vendor drivers can trivially provide this
serialization internally if necessary. Second, review comments note
the new -EAGAIN behavior when the device, and in particular the remove
attribute, becomes visible in sysfs. If a remove is triggered prior
to completion of mdev_device_create() the user will see a -EAGAIN
error. While the errno is different, receiving an error during this
period is not, the previous implementation returned -ENODEV for the
same condition. Furthermore, the consistency to the user is improved
in the case where mdev_device_remove_ops() returns error. Previously
concurrent calls to mdev_device_remove() could see the device
disappear with -ENODEV and return in the case of error. Now a user
would see -EAGAIN while the device is in this transitory state.
Reviewed-by: Kirti Wankhede <kwankhede@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Acked-by: Halil Pasic <pasic@linux.ibm.com> Acked-by: Zhenyu Wang <zhenyuw@linux.intel.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When running a fuzz tester against a KASAN-enabled kernel, the following
splat periodically occurs.
The problem occurs when the test sends a GETDEVICEINFO request with a
malformed xdr array (size but no data) for gdia_notify_types and the
array size is > 0x3fffffff, which results in an overflow in the value of
nbytes which is passed to read_buf().
If the array size is 0x40000000, 0x80000000, or 0xc0000000, then after
the overflow occurs, the value of nbytes 0, and when that happens the
pointer returned by read_buf() points to the end of the xdr data (i.e.
argp->end) when really it should be returning NULL.
Fix this by returning NFS4ERR_BAD_XDR if the array size is > 1000 (this
value is arbitrary, but it's the same threshold used by
nfsd4_decode_bitmap()... in could really be any value >= 1 since it's
expected to get at most a single bitmap in gdia_notify_types).
[ 119.256854] ==================================================================
[ 119.257611] BUG: KASAN: use-after-free in nfsd4_decode_getdeviceinfo+0x5a4/0x5b0 [nfsd]
[ 119.258422] Read of size 4 at addr ffff880113ada000 by task nfsd/538
If the server returns NFS4ERR_SEQ_FALSE_RETRY or NFS4ERR_RETRY_UNCACHED_REP,
then it thinks we're trying to replay an existing request. If so, then
let's just bump the sequence ID and retry the operation.
Currently, when IO to DS fails, client returns the layout and
retries against the MDS. However, then on umounting (inode eviction)
it returns the layout again.
This is because pnfs_return_layout() was changed in
commit d78471d32bb6 ("pnfs/blocklayout: set PNFS_LAYOUTRETURN_ON_ERROR")
to always set NFS_LAYOUT_RETURN_REQUESTED so even if we returned
the layout, it will be returned again. Instead, let's also check
if we have already marked the layout invalid.
The max number of slots used in xennet_get_responses() is set to
MAX_SKB_FRAGS + (rx->status <= RX_COPY_THRESHOLD).
In old kernel-xen MAX_SKB_FRAGS was 18, while nowadays it is 17. This
difference is resulting in frequent messages "too many slots" and a
reduced network throughput for some workloads (factor 10 below that of
a kernel-xen based guest).
Replacing MAX_SKB_FRAGS by XEN_NETIF_NR_SLOTS_MIN for calculation of
the max number of slots to use solves that problem (tests showed no
more messages "too many slots" and throughput was as high as with the
kernel-xen based guest system).
Replace MAX_SKB_FRAGS-2 by XEN_NETIF_NR_SLOTS_MIN-1 in
netfront_tx_slot_available() for making it clearer what is really being
tested without actually modifying the tested value.
Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
These patches fix a few issues where KCOV code could trigger recursive
faults, discovered while debugging a patch enabling KCOV for arch/arm:
* On CONFIG_PREEMPT kernels, there's a small race window where
__sanitizer_cov_trace_pc() can see a bogus kcov_area.
* Lazy faulting of the vmalloc area can cause mutual recursion between
fault handling code and __sanitizer_cov_trace_pc().
* During the context switch, switching the mm can cause the kcov_area to
be transiently unmapped.
These are prerequisites for enabling KCOV on arm, but the issues
themsevles are generic -- we just happen to avoid them by chance rather
than design on x86-64 and arm64.
This patch (of 3):
For kernels built with CONFIG_PREEMPT, some C code may execute before or
after the interrupt handler, while the hardirq count is zero. In these
cases, in_task() can return true.
A task can be interrupted in the middle of a KCOV_DISABLE ioctl while it
resets the task's kcov data via kcov_task_init(). Instrumented code
executed during this period will call __sanitizer_cov_trace_pc(), and as
in_task() returns true, will inspect t->kcov_mode before trying to write
to t->kcov_area.
In kcov_init_task() we update t->kcov_{mode,area,size} with plain stores,
which may be re-ordered, torn, etc. Thus __sanitizer_cov_trace_pc() may
see bogus values for any of these fields, and may attempt to write to
memory which is not mapped.
Let's avoid this by using WRITE_ONCE() to set t->kcov_mode, with a
barrier() to ensure this is ordered before we clear t->kov_{area,size}.
This ensures that any code execute while kcov_init_task() is preempted
will either see valid values for t->kcov_{area,size}, or will see that
t->kcov_mode is KCOV_MODE_DISABLED, and bail out without touching
t->kcov_area.
Switchdev notifications for addition of SWITCHDEV_OBJ_ID_PORT_VLAN are
distributed not only on clean addition, but also when flags on an
existing VLAN are changed. mlxsw_sp_bridge_port_vlan_add() calls
mlxsw_sp_port_vlan_get() to get at the port_vlan in question, which
implicitly references the object. This then leads to discrepancies in
reference counting when the VLAN is removed. spectrum.c warns about the
problem when the module is removed:
which in turn causes the struct page size to exceed the size set in
STRUCT_PAGE_MAX_SHIFT. This value is an an estimate used to size the
VMEMMAP page array according to address space and struct page size.
However, the check is performed - and triggers here - on a !VMEMMAP
config, which consumes an additional 22 page bits for the sparse
section id. When VMEMMAP is enabled, those bits are returned, cpupid
doesn't need its own member, and the page passes the VMEMMAP check.
Restrict that check to the situation it was meant to check: that we
are sizing the VMEMMAP page array correctly.
Says Arnd:
Further experiments show that the build error already existed before,
but was only triggered with larger values of CONFIG_NR_CPU and/or
CONFIG_NODES_SHIFT that might be used in actual configurations but
not in randconfig builds.
With longer CPU and node masks, I could recreate the problem with
kernels as old as linux-4.7 when arm64 NUMA support got added.
Reported-by: Arnd Bergmann <arnd@arndb.de> Tested-by: Arnd Bergmann <arnd@arndb.de> Cc: stable@vger.kernel.org Fixes: 1a2db300348b ("arm64, numa: Add NUMA support for arm64 platforms.") Fixes: 3e1907d5bf5a ("arm64: mm: move vmemmap region right below the linear region") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 57ea2a34adf4 ("tracing/kprobes: Fix trace_probe flags on
enable_trace_kprobe() failure") added an if statement that depends on another
if statement that gcc doesn't see will initialize the "link" variable and
gives the warning:
"warning: 'link' may be used uninitialized in this function"
It is really a false positive, but to quiet the warning, and also to make
sure that it never actually is used uninitialized, initialize the "link"
variable to NULL and add an if (!WARN_ON_ONCE(!link)) where the compiler
thinks it could be used uninitialized.
Cc: stable@vger.kernel.org Fixes: 57ea2a34adf4 ("tracing/kprobes: Fix trace_probe flags on enable_trace_kprobe() failure") Reported-by: kbuild test robot <lkp@intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If enable_trace_kprobe fails to enable the probe in enable_k(ret)probe
it returns an error, but does not unset the tp flags it set previously.
This results in a probe being considered enabled and failures like being
unable to remove the probe through kprobe_events file since probes_open()
expects every probe to be disabled.
There is a window for racing when printing directly to task->comm,
allowing other threads to see a non-terminated string. The vsnprintf
function fills the buffer, counts the truncated chars, then finally
writes the \0 at the end.
creator other
vsnprintf:
fill (not terminated)
count the rest trace_sched_waking(p):
... memcpy(comm, p->comm, TASK_COMM_LEN)
write \0
The consequences depend on how 'other' uses the string. In our case,
it was copied into the tracing system's saved cmdlines, a buffer of
adjacent TASK_COMM_LEN-byte buffers (note the 'n' where 0 should be):
There was a case that triggered a double free in event_trigger_callback()
due to the called reg() function freeing the trigger_data and then it
getting freed again by the error return by the caller. The solution there
was to up the trigger_data ref count.
Code inspection found that event_enable_trigger_func() has the same issue,
but is not as easy to trigger (requires harder to trigger failures). It
needs to be solved slightly different as it needs more to clean up when the
reg() function fails.
# cd /sys/kernel/debug/tracing
# echo 500000 > buffer_size_kb
[ Or some other number that takes up most of memory ]
# echo snapshot > events/sched/sched_switch/trigger
The cause is because the register_snapshot_trigger() call failed to
allocate the snapshot buffer, and then called unregister_trigger()
which freed the data that was passed to it. Then on return to the
function that called register_snapshot_trigger(), as it sees it
failed to register, it frees the trigger_data again and causes
a double free.
By calling event_trigger_init() on the trigger_data (which only ups
the reference counter for it), and then event_trigger_free() afterward,
the trigger_data would not get freed by the registering trigger function
as it would only up and lower the ref count for it. If the register
trigger function fails, then the event_trigger_free() called after it
will free the trigger data normally.
While forking, if delayacct init fails due to memory shortage, it
continues expecting all delayacct users to check task->delays pointer
against NULL before dereferencing it, which all of them used to do.
Commit c96f5471ce7d ("delayacct: Account blkio completion on the correct
task"), while updating delayacct_blkio_end() to take the target task
instead of always using %current, made the function test NULL on
%current->delays and then continue to operated on @p->delays. If
%current succeeded init while @p didn't, it leads to the following
crash.
The size of kvm's shadow page tables corresponds to the size of the
guest virtual machines on the system. Large VMs can spend a significant
amount of memory as shadow page tables which can not be left as system
memory overhead. So, account shadow page tables to the kmemcg.
[shakeelb@google.com: replace (GFP_KERNEL|__GFP_ACCOUNT) with GFP_KERNEL_ACCOUNT] Link: http://lkml.kernel.org/r/20180629140224.205849-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627181349.149778-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Peter Feiner <pfeiner@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The Lenovo LaVie Z laptop requires i8042 to be reset in order to
consistently detect its Elantech touchpad. The nomux and kbdreset
quirks are not sufficient.
It's possible the other LaVie Z models from NEC require this as well.
Since Linux v4.10 release (commit 1d9174fbc55e "PM / Runtime: Defer
resuming of the device in pm_runtime_force_resume()"),
pm_runtime_force_resume() function doesn't runtime resume device if it was
not runtime active before system suspend. Thus, driver should not do any
register access after pm_runtime_force_resume() without checking the
runtime status of the device. To fix this issue, simply move
s3c64xx_spi_hwinit() call to s3c64xx_spi_runtime_resume() to ensure that
hardware is always properly initialized. This fixes Synchronous external
abort issue on system suspend/resume cycle on newer Exynos SoCs.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org> Signed-off-by: Mark Brown <broonie@kernel.org> Cc: stable@vger.kernel.org Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
gcc-4.4.4 has issues with initialization of anonymous unions:
drivers/infiniband/ulp/srpt/ib_srpt.c: In function 'srpt_zerolength_write':
drivers/infiniband/ulp/srpt/ib_srpt.c:854: error: unknown field 'wr_cqe' specified in initializer
drivers/infiniband/ulp/srpt/ib_srpt.c:854: warning: initialization makes integer from pointer without a cast
Work aound this.
Fixes: 2a78cb4db487 ("IB/srpt: Fix an out-of-bounds stack access in srpt_zerolength_write()") Cc: Bart Van Assche <bart.vanassche@wdc.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Doug Ledford <dledford@redhat.com> Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
gcc-4.4.4 has issues with initialization of anonymous unions.
drivers/infiniband/core/verbs.c: In function '__ib_drain_sq':
drivers/infiniband/core/verbs.c:2204: error: unknown field 'wr_cqe' specified in initializer
drivers/infiniband/core/verbs.c:2204: warning: initialization makes integer from pointer without a cast
Work around this.
Fixes: a1ae7d0345edd5 ("RDMA/core: Avoid that ib_drain_qp() triggers an out-of-bounds stack access") Cc: Bart Van Assche <bart.vanassche@wdc.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Sagi Grimberg <sagi@grimberg.me> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Doug Ledford <dledford@redhat.com> Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
==================================================================
BUG: KASAN: stack-out-of-bounds in rxe_post_send+0x77d/0x9b0 [rdma_rxe]
Read of size 8 at addr ffff880061aef860 by task 01/1080
Reference count of device node was increased in of_i2c_register_device,
but without decreasing it in i2c_unregister_device. Then the added
device node will never be released. Fix this by adding the of_node_put.
Signed-off-by: Lixin Wang <alan.1.wang@nokia-sbell.com> Tested-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Wolfram Sang <wsa@the-dreams.de> Cc: stable@kernel.org Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
One of the classes of kernel stack content leaks[1] is exposing the
contents of prior heap or stack contents when a new process stack is
allocated. Normally, those stacks are not zeroed, and the old contents
remain in place. In the face of stack content exposure flaws, those
contents can leak to userspace.
Fixing this will make the kernel no longer vulnerable to these flaws, as
the stack will be wiped each time a stack is assigned to a new process.
There's not a meaningful change in runtime performance; it almost looks
like it provides a benefit.
It continues to look like it's faster, though the deviation is rather
wide, but I'm not sure what I could do that would be less noisy. I'm
open to ideas!
Link: http://lkml.kernel.org/r/20180221021659.GA37073@beast Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Starting with gcc-8.1, we get a warning about all system call definitions,
which use an alias between functions with incompatible prototypes, e.g.:
In file included from ../mm/process_vm_access.c:19:
../include/linux/syscalls.h:211:18: warning: 'sys_process_vm_readv' alias between functions of incompatible types 'long int(pid_t, const struct iovec *, long unsigned int, const struct iovec *, long unsigned int, long unsigned int)' {aka 'long int(int, const struct iovec *, long unsigned int, const struct iovec *, long unsigned int, long unsigned int)'} and 'long int(long int, long int, long int, long int, long int, long int)' [-Wattribute-alias]
asmlinkage long sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) \
^~~
../include/linux/syscalls.h:207:2: note: in expansion of macro '__SYSCALL_DEFINEx'
__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)
^~~~~~~~~~~~~~~~~
../include/linux/syscalls.h:201:36: note: in expansion of macro 'SYSCALL_DEFINEx'
#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)
^~~~~~~~~~~~~~~
../mm/process_vm_access.c:300:1: note: in expansion of macro 'SYSCALL_DEFINE6'
SYSCALL_DEFINE6(process_vm_readv, pid_t, pid, const struct iovec __user *, lvec,
^~~~~~~~~~~~~~~
../include/linux/syscalls.h:215:18: note: aliased declaration here
asmlinkage long SyS##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \
^~~
../include/linux/syscalls.h:207:2: note: in expansion of macro '__SYSCALL_DEFINEx'
__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)
^~~~~~~~~~~~~~~~~
../include/linux/syscalls.h:201:36: note: in expansion of macro 'SYSCALL_DEFINEx'
#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)
^~~~~~~~~~~~~~~
../mm/process_vm_access.c:300:1: note: in expansion of macro 'SYSCALL_DEFINE6'
SYSCALL_DEFINE6(process_vm_readv, pid_t, pid, const struct iovec __user *, lvec,
This is really noisy and does not indicate a real problem. In the latest
mainline kernel, this was addressed by commit bee20031772a ("disable
-Wattribute-alias warning for SYSCALL_DEFINEx()"), which seems too invasive
to backport.
This takes a much simpler approach and just disables the warning across the
kernel.
Inside m_can_chip_config(), when setting up the new value of the CCCR,
the CCCR_NISO bit is not cleared like the others, CCCR_TEST, CCCR_MON,
CCCR_BRSE and CCCR_FDOE, before checking the can.ctrlmode bits for
CAN_CTRLMODE_FD_NON_ISO.
This way once the controller was configured for CAN_CTRLMODE_FD_NON_ISO,
this mode could never be cleared again.
This fix is only relevant for controllers with version 3.1.x or 3.2.x.
Older versions do not support NISO.
Signed-off-by: Roman Fietze <roman.fietze@telemotive.de> Cc: linux-stable <stable@vger.kernel.org> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The DMA logic in firmwares < v3.3.0 embedded in the PCAN-PCIe FD cards
family is not capable of handling a mix of 32-bit and 64-bit logical
addresses. If the board is equipped with 2 or 4 CAN ports, then such a
situation might lead to a PCIe Bus Error "Malformed TLP" packet
as well as "irq xx: nobody cared" issue.
This patch adds a workaround that requests only 32-bit DMA addresses
when these might be allocated outside of the 4 GB area.
This issue has been fixed in firmware v3.3.0 and next.
RX overflow interrupt (RXOFLW) is disabled even though xcan_interrupt()
processes it. This means that an RX overflow interrupt will only be
processed when another interrupt gets asserted (e.g. for RX/TX).
Fix that by enabling the RXOFLW interrupt.
Fixes: b1201e44f50b ("can: xilinx CAN controller support") Signed-off-by: Anssi Hannula <anssi.hannula@bitwise.fi> Cc: Michal Simek <michal.simek@xilinx.com> Cc: <stable@vger.kernel.org> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
xcan_interrupt() clears ERROR|RXOFLV|BSOFF|ARBLST interrupts if any of
them is asserted. This does not take into account that some of them
could have been asserted between interrupt status read and interrupt
clear, therefore clearing them without handling them.
Fix the code to only clear those interrupts that it knows are asserted
and therefore going to be processed in xcan_err_interrupt().
Fixes: b1201e44f50b ("can: xilinx CAN controller support") Signed-off-by: Anssi Hannula <anssi.hannula@bitwise.fi> Cc: Michal Simek <michal.simek@xilinx.com> Cc: <stable@vger.kernel.org> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The xilinx_can driver assumes that the TXOK interrupt only clears after
it has been acknowledged as many times as there have been successfully
sent frames.
However, the documentation does not mention such behavior, instead
saying just that the interrupt is cleared when the clear bit is set.
Similarly, testing seems to also suggest that it is immediately cleared
regardless of the amount of frames having been sent. Performing some
heavy TX load and then going back to idle has the tx_head drifting
further away from tx_tail over time, steadily reducing the amount of
frames the driver keeps in the TX FIFO (but not to zero, as the TXOK
interrupt always frees up space for 1 frame from the driver's
perspective, so frames continue to be sent) and delaying the local echo
frames.
The TX FIFO tracking is also otherwise buggy as it does not account for
TX FIFO being cleared after software resets, causing
BUG!, TX FIFO full when queue awake!
messages to be output.
There does not seem to be any way to accurately track the state of the
TX FIFO for local echo support while using the full TX FIFO.
The Zynq version of the HW (but not the soft-AXI version) has watermark
programming support and with it an additional TX-FIFO-empty interrupt
bit.
Modify the driver to only put 1 frame into TX FIFO at a time on soft-AXI
and 2 frames at a time on Zynq. On Zynq the TXFEMP interrupt bit is used
to detect whether 1 or 2 frames have been sent at interrupt processing
time.
Tested with the integrated CAN on Zynq-7000 SoC. The 1-frame-FIFO mode
was also tested.
An alternative way to solve this would be to drop local echo support but
keep using the full TX FIFO.
v2: Add FIFO space check before TX queue wake with locking to
synchronize with queue stop. This avoids waking the queue when xmit()
had just filled it.
v3: Keep local echo support and reduce the amount of frames in FIFO
instead as suggested by Marc Kleine-Budde.
The xilinx_can driver performs a software reset when an RX overrun is
detected. This causes the device to enter Configuration mode where no
messages are received or transmitted.
The documentation does not mention any need to perform a reset on an RX
overrun, and testing by inducing an RX overflow also indicated that the
device continues to work just fine without a reset.
The xilinx_can driver contains no mechanism for propagating recovery
from CAN_STATE_ERROR_WARNING and CAN_STATE_ERROR_PASSIVE.
Add such a mechanism by factoring the handling of
XCAN_STATE_ERROR_PASSIVE and XCAN_STATE_ERROR_WARNING out of
xcan_err_interrupt and checking for recovery after RX and TX if the
interface is in one of those states.
There are several issues with the suspend/resume handling code of the
driver:
- The device is attached and detached in the runtime_suspend() and
runtime_resume() callbacks if the interface is running. However,
during xcan_chip_start() the interface is considered running,
causing the resume handler to incorrectly call netif_start_queue()
at the beginning of xcan_chip_start(), and on xcan_chip_start() error
return the suspend handler detaches the device leaving the user
unable to bring-up the device anymore.
- The device is not brought properly up on system resume. A reset is
done and the code tries to determine the bus state after that.
However, after reset the device is always in Configuration mode
(down), so the state checking code does not make sense and
communication will also not work.
- The suspend callback tries to set the device to sleep mode (low-power
mode which monitors the bus and brings the device back to normal mode
on activity), but then immediately disables the clocks (possibly
before the device reaches the sleep mode), which does not make sense
to me. If a clean shutdown is wanted before disabling clocks, we can
just bring it down completely instead of only sleep mode.
Reorganize the PM code so that only the clock logic remains in the
runtime PM callbacks and the system PM callbacks contain the device
bring-up/down logic. This makes calling the runtime PM callbacks during
e.g. xcan_chip_start() safe.
The system PM callbacks now simply call common code to start/stop the
HW if the interface was running, replacing the broken code from before.
xcan_chip_stop() is updated to use the common reset code so that it will
wait for the reset to complete. Reset also disables all interrupts so do
not do that separately.
Also, the device_may_wakeup() checks are removed as the driver does not
have wakeup support.
Tested on Zynq-7000 integrated CAN.
Signed-off-by: Anssi Hannula <anssi.hannula@bitwise.fi> Cc: Michal Simek <michal.simek@xilinx.com> Cc: <stable@vger.kernel.org> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If the device gets into a state where RXNEMP (RX FIFO not empty)
interrupt is asserted without RXOK (new frame received successfully)
interrupt being asserted, xcan_rx_poll() will continue to try to clear
RXNEMP without actually reading frames from RX FIFO. If the RX FIFO is
not empty, the interrupt will not be cleared and napi_schedule() will
just be called again.
This situation can occur when:
(a) xcan_rx() returns without reading RX FIFO due to an error condition.
The code tries to clear both RXOK and RXNEMP but RXNEMP will not clear
due to a frame still being in the FIFO. The frame will never be read
from the FIFO as RXOK is no longer set.
(b) A frame is received between xcan_rx_poll() reading interrupt status
and clearing RXOK. RXOK will be cleared, but RXNEMP will again remain
set as the new message is still in the FIFO.
I'm able to trigger case (b) by flooding the bus with frames under load.
There does not seem to be any benefit in using both RXNEMP and RXOK in
the way the driver does, and the polling example in the reference manual
(UG585 v1.10 18.3.7 Read Messages from RxFIFO) also says that either
RXOK or RXNEMP can be used for detecting incoming messages.
Fix the issue and simplify the RX processing by only using RXNEMP
without RXOK.
Commit 52cdbdd49853 (driver core: correct device's shutdown order)
introduced a regression by breaking device shutdown on some systems.
Namely, the devices_kset_move_last() call in really_probe() added by
that commit is a mistake as it may cause parents to follow children
in the devices_kset list which then causes shutdown to fail. For
example, if a device has children before really_probe() is called
for it (which is not uncommon), that call will cause it to be
reordered after the children in the devices_kset list and the
ordering of that list will not reflect the correct device shutdown
order any more.
Also it causes the devices_kset list to be constantly reordered
until all drivers have been probed which is totally pointless
overhead in the majority of cases and it only covered an issue
with system shutdown, while system-wide suspend/resume potentially
had the same issue on the affected platforms (which was not covered).
Moreover, the shutdown issue originally addressed by the change in
really_probe() made by commit 52cdbdd49853 is not present in 4.18-rc
any more, since dra7 started to use the sdhci-omap driver which
doesn't disable any regulators during shutdown, so the really_probe()
part of commit 52cdbdd49853 can be safely reverted. [The original
issue was related to the omap_hsmmc driver used by dra7 previously.]
For the above reasons, revert the really_probe() modifications made
by commit 52cdbdd49853.
The other code changes made by commit 52cdbdd49853 are useful and
they need not be reverted.
Fixes: 52cdbdd49853 (driver core: correct device's shutdown order) Link: https://lore.kernel.org/lkml/CAFgQCTt7VfqM=UyCnvNFxrSw8Z6cUtAi3HUwR4_xPAc03SgHjQ@mail.gmail.com/ Reported-by: Pingfan Liu <kernelfans@gmail.com> Tested-by: Pingfan Liu <kernelfans@gmail.com> Reviewed-by: Kishon Vijay Abraham I <kishon@ti.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 1b9ba000 ("Allow function drivers to pause control
transfers") states that USB_GADGET_DELAYED_STATUS is only
supported if data phase is 0 bytes.
It seems that when the length is not 0 bytes, there is no
need to explicitly delay the data stage since the transfer
is not completed until the user responds. However, when the
length is 0, there is no data stage and the transfer is
finished once setup() returns, hence there is a need to
explicitly delay completion.
This manifests as the following bugs:
Prior to 946ef68ad4e4 ('Let setup() return
USB_GADGET_DELAYED_STATUS'), when setup is 0 bytes, ffs
would require user to queue a 0 byte request in order to
clear setup state. However, that 0 byte request was actually
not needed and would hang and cause errors in other setup
requests.
After the above commit, 0 byte setups work since the gadget
now accepts empty queues to ep0 to clear the delay, but all
other setups hang.
The commit 3bc04e28a030 ("usb: dwc2: host: Get aligned DMA in a more
supported way") introduced a common way to align DMA allocations.
The code in the commit aligns the struct dma_aligned_buffer but the
actual DMA address pointed by data[0] gets aligned to an offset from
the allocated boundary by the kmalloc_ptr and the old_xfer_buffer
pointers.
This is against the recommendation in Documentation/DMA-API.txt which
states:
Therefore, it is recommended that driver writers who don't take
special care to determine the cache line size at run time only map
virtual regions that begin and end on page boundaries (which are
guaranteed also to be cache line boundaries).
The effect of this is that architectures with non-coherent DMA caches
may run into memory corruption or kernel crashes with Unhandled
kernel unaligned accesses exceptions.
Fix the alignment by positioning the DMA area in front of the allocation
and use memory at the end of the area for storing the orginal
transfer_buffer pointer. This may have the added benefit of increased
performance as the DMA area is now fully aligned on all architectures.
Tested with Lantiq xRX200 (MIPS) and RPi Model B Rev 2 (ARM).
Fixes: 3bc04e28a030 ("usb: dwc2: host: Get aligned DMA in a more supported way") Cc: <stable@vger.kernel.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Antti Seppälä <a.seppala@gmail.com> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
"If a hub has per-port power switching and per-port current limiting,
an over-current on one port may still cause the power on another port
to fall below specific minimums. In this case, the affected port is
placed in the Power-Off state and C_PORT_OVER_CURRENT is set for the
port, but PORT_OVER_CURRENT is not set."
so let's check C_PORT_OVER_CURRENT too for over current condition.
Fixes: 08d1dec6f405 ("usb:hub set hub->change_bits when over-current happens") Cc: <stable@vger.kernel.org> Tested-by: Alessandro Antenucci <antenucci@korg.it> Signed-off-by: Bin Liu <b-liu@ti.com> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If softsynthx_read() is called with `count < 3`, `count - 3` wraps, causing
the loop to copy as much data as available to the provided buffer. If
softsynthx_read() is invoked through sys_splice(), this causes an
unbounded kernel write; but even when userspace just reads from it
normally, a small size could cause userspace crashes.
In case skb in out_or_order_queue is the result of
multiple skbs coalescing, we would like to get a proper gso_segs
counter tracking, so that future tcp_drop() can report an accurate
number.
I chose to not implement this tracking for skbs in receive queue,
since they are not dropped, unless socket is disconnected.
Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In order to be able to give better diagnostics and detect
malicious traffic, we need to have better sk->sk_drops tracking.
Fixes: 9f5afeae5152 ("tcp: use an RB tree for ooo receive queue") Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In case an attacker feeds tiny packets completely out of order,
tcp_collapse_ofo_queue() might scan the whole rb-tree, performing
expensive copies, but not changing socket memory usage at all.
1) Do not attempt to collapse tiny skbs.
2) Add logic to exit early when too many tiny skbs are detected.
We prefer not doing aggressive collapsing (which copies packets)
for pathological flows, and revert to tcp_prune_ofo_queue() which
will be less expensive.
In the future, we might add the possibility of terminating flows
that are proven to be malicious.
Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Right after a TCP flow is created, receiving tiny out of order
packets allways hit the condition :
if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
tcp_clamp_window(sk);
tcp_clamp_window() increases sk_rcvbuf to match sk_rmem_alloc
(guarded by tcp_rmem[2])
Calling tcp_collapse_ofo_queue() in this case is not useful,
and offers a O(N^2) surface attack to malicious peers.
Better not attempt anything before full queue capacity is reached,
forcing attacker to spend lots of resource and allow us to more
easily detect the abuse.
Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Juha-Matti Tilli reported that malicious peers could inject tiny
packets in out_of_order_queue, forcing very expensive calls
to tcp_collapse_ofo_queue() and tcp_prune_ofo_queue() for
every incoming packet. out_of_order_queue rb-tree can contain
thousands of nodes, iterating over all of them is not nice.
Before linux-4.9, we would have pruned all packets in ofo_queue
in one go, every XXXX packets. XXXX depends on sk_rcvbuf and skbs
truesize, but is about 7000 packets with tcp_rmem[2] default of 6 MB.
Since we plan to increase tcp_rmem[2] in the future to cope with
modern BDP, can not revert to the old behavior, without great pain.
Strategy taken in this patch is to purge ~12.5 % of the queue capacity.
Fixes: 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Juha-Matti Tilli <juha-matti.tilli@iki.fi> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently when a DCTCP receiver delays an ACK and receive a
data packet with a different CE mark from the previous one's, it
sends two immediate ACKs acking previous and latest sequences
respectly (for ECN accounting).
Previously sending the first ACK may mark off the delayed ACK timer
(tcp_event_ack_sent). This may subsequently prevent sending the
second ACK to acknowledge the latest sequence (tcp_ack_snd_check).
The culprit is that tcp_send_ack() assumes it always acknowleges
the latest sequence, which is not true for the first special ACK.
The fix is to not make the assumption in tcp_send_ack and check the
actual ack sequence before cancelling the delayed ACK. Further it's
safer to pass the ack sequence number as a local variable into
tcp_send_ack routine, instead of intercepting tp->rcv_nxt to avoid
future bugs like this.
Reported-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Previously, when a data segment was sent an ACK was piggybacked
on the data segment without generating a CA_EVENT_NON_DELAYED_ACK
event to notify congestion control modules. So the DCTCP
ca->delayed_ack_reserved flag could incorrectly stay set when
in fact there were no delayed ACKs being reserved. This could result
in sending a special ECN notification ACK that carries an older
ACK sequence, when in fact there was no need for such an ACK.
DCTCP keeps track of the delayed ACK status with its own separate
state ca->delayed_ack_reserved. Previously it may accidentally cancel
the delayed ACK without updating this field upon sending a special
ACK that carries a older ACK sequence. This inconsistency would
lead to DCTCP receiver never acknowledging the latest data until the
sender times out and retry in some cases.
+0.010 < [ect0] W. 4501:5501(1000) ack 4 win 257
// Previously the ACK sequence below would be 4501, causing a long RTO
+0.040~+0.045 > [ect01] . 4:4(0) ack 5501 // delayed ack
+0.311 < [ect0] . 5501:6501(1000) ack 4 win 257 // More data
+0 > [ect01] . 4:4(0) ack 6501 // now acks everything
+0.500 < F. 9501:9501(0) ack 4 win 257
Reported-by: Larry Brakmo <brakmo@fb.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Lawrence Brakmo <brakmo@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Problem:
In vxlan_newlink, a default fdb entry is added before register_netdev.
The default fdb creation function also notifies user-space of the
fdb entry on the vxlan device which user-space does not know about yet.
(RTM_NEWNEIGH goes before RTM_NEWLINK for the same ifindex).
This patch fixes the user-space netlink notification ordering issue
with the following changes:
- decouple fdb notify from fdb create.
- Move fdb notify after register_netdev.
- Call rtnl_configure_link in vxlan newlink handler to notify
userspace about the newlink before fdb notify and
hence avoiding the user-space race.
Fixes: afbd8bae9c79 ("vxlan: add implicit fdb entry for default destination") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add a new option do_notify to vxlan_fdb_destroy to make
sending netlink notify optional. Used by a later patch.
Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
- Add new vxlan_fdb_alloc helper
- rename existing vxlan_fdb_create into vxlan_fdb_update:
because it really creates or updates an existing
fdb entry
- move new fdb creation into a separate vxlan_fdb_create
Main motivation for this change is to introduce the ability
to decouple vxlan fdb creation and notify, used in a later patch.
Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
rtnl_configure_link sets dev->rtnl_link_state to
RTNL_LINK_INITIALIZED and unconditionally calls
__dev_notify_flags to notify user-space of dev flags.
current call sequence for rtnl_configure_link
rtnetlink_newlink
rtnl_link_ops->newlink
rtnl_configure_link (unconditionally notifies userspace of
default and new dev flags)
If a newlink handler wants to call rtnl_configure_link
early, we will end up with duplicate notifications to
user-space.
This patch fixes rtnl_configure_link to check rtnl_link_state
and call __dev_notify_flags with gchanges = 0 if already
RTNL_LINK_INITIALIZED.
Later in the series, this patch will help the following sequence
where a driver implementing newlink can call rtnl_configure_link
to initialize the link early.
makes the following call sequence work:
rtnetlink_newlink
rtnl_link_ops->newlink (vxlan) -> rtnl_configure_link (initializes
link and notifies
user-space of default
dev flags)
rtnl_configure_link (updates dev flags if requested by user ifm
and notifies user-space of new dev flags)
Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Current sg coalescing logic in sk_alloc_sg() (latter is used by tls and
sockmap) is not quite correct in that we do fetch the previous sg entry,
however the subsequent check whether the refilled page frag from the
socket is still the same as from the last entry with prior offset and
length matching the start of the current buffer is comparing always the
first sg list entry instead of the prior one.
Fixes: 3c4d7559159b ("tls: kernel TLS support") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Dave Watson <davejwatson@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The situation described in the comment can occur also with
PHY_IGNORE_INTERRUPT, therefore change the condition to include it.
Fixes: f555f34fdc58 ("net: phy: fix auto-negotiation stall due to unavailable interrupt") Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Hangbin Liu [Fri, 20 Jul 2018 06:04:27 +0000 (14:04 +0800)]
multicast: do not restore deleted record source filter mode to new one
There are two scenarios that we will restore deleted records. The first is
when device down and up(or unmap/remap). In this scenario the new filter
mode is same with previous one. Because we get it from in_dev->mc_list and
we do not touch it during device down and up.
The other scenario is when a new socket join a group which was just delete
and not finish sending status reports. In this scenario, we should use the
current filter mode instead of restore old one. Here are 4 cases in total.
Fixes: 24803f38a5c0b (igmp: do not remove igmp souce list info when set link down) Fixes: 1666d49e1d416 (mld: do not remove mld souce list info when set link down) Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Example setup:
host: ip -6 addr add dev eth1 2001:db8:104::4
where eth1 is enslaved to a VRF
switch: ip -6 ro add 2001:db8:104::4/128 dev br1
where br1 only has an LLA
ping6 2001:db8:104::4
ssh 2001:db8:104::4
(NOTE: UDP works fine if the PKTINFO has the address set to the global
address and ifindex is set to the index of eth1 with a destination an
LLA).
For ICMP, icmp6_iif needs to be updated to check if skb->dev is an
L3 master. If it is then return the ifindex from rt6i_idev similar
to what is done for loopback.
For TCP, restore the original tcp_v6_iif definition which is needed in
most places and add a new tcp_v6_iif_l3_slave that considers the
l3_slave variability. This latter check is only needed for socket
lookups.
Fixes: 9ff74384600a ("net: vrf: Handle ipv6 multicast and link-local addresses") Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When driver converts HW timestamp to wall clock time it subtracts
the last saved cycle counter from the HW timestamp and converts the
difference to nanoseconds.
The conversion is done by multiplying the cycles difference with the
clock multiplier value as a first step and therefore the cycles
difference should be small enough so that the multiplication product
doesn't exceed 64bit.
The overflow handling routine is in charge of updating the last saved
cycle counter in driver and it is called periodically using kernel
delayed workqueue.
The delay period for this work is calculated using the max HW cycle
counter value (a 41 bit mask) as a base which doesn't take the 64bit
limit into account so the delay period may be incorrect and too
long to prevent a large difference between the HW counter and the last
saved counter in SW.
This change adjusts the work period for the HW clock overflow work by
taking the minimum between the previous value and the quotient of max
u64 value and the clock multiplier value.
Fixes: ddff00d42043 ("net: Move skb_has_shared_frag check out of GRE code and into segmentation") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Reported-by: syzbot <syzkaller@googlegroups.com> Acked-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Function mlx4_RST2INIT_QP_wrapper saved the qp number passed in the qp
context, rather than the one passed in the input modifier.
However, the qp number in the qp context is not defined as a
required parameter by the FW. Therefore, drivers may choose to not
specify the qp number in the qp context for the reset-to-init transition.
Thus, we must save the qp number passed in the command input modifier --
which is always present. (This saved qp number is used as the input
modifier for command 2RST_QP when a slave's qp's are destroyed).
Fixes: c82e9aa0a8bc ("mlx4_core: resource tracking for HCA resources used by guests") Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Tariq Toukan <tariqt@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This logic and its ipv4 counterpart read the destination port from
the packet at skb_transport_offset(skb) + 4.
With MSG_MORE and a local SOCK_RAW sender, syzbot was able to cook a
packet that stores headers exactly up to skb_transport_offset(skb) in
the head and the remainder in a frag.
Call pskb_may_pull before accessing the pointer to ensure that it lies
in skb head.
The skb hash for locally generated ip[v6] fragments belonging
to the same datagram can vary in several circumstances:
* for connected UDP[v6] sockets, the first fragment get its hash
via set_owner_w()/skb_set_hash_from_sk()
* for unconnected IPv6 UDPv6 sockets, the first fragment can get
its hash via ip6_make_flowlabel()/skb_get_hash_flowi6(), if
auto_flowlabel is enabled
For the following frags the hash is usually computed via
skb_get_hash().
The above can cause OoO for unconnected IPv6 UDPv6 socket: in that
scenario the egress tx queue can be selected on a per packet basis
via the skb hash.
It may also fool flow-oriented schedulers to place fragments belonging
to the same datagram in different flows.
Fix the issue by copying the skb hash from the head frag into
the others at fragmentation time.
Before this commit:
perf probe -a "dev_queue_xmit skb skb->hash skb->l4_hash:b1@0/8 skb->sw_hash:b1@1/8"
netperf -H $IPV4 -t UDP_STREAM -l 5 -- -m 2000 -n &
perf record -e probe:dev_queue_xmit -e probe:skb_set_owner_w -a sleep 0.1
perf script
probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=3713014309 l4_hash=1 sw_hash=0
probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=0 l4_hash=0 sw_hash=0
Fixes: b73c3d0e4f0e ("net: Save TX flow hash in sock and set in skbuf on xmit") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
For some time now, if you load the bonding driver and configure bond
parameters via sysfs using minimal config options, such as specifying
nothing but the mode, relying on defaults for everything else, modes
that cannot use arp monitoring (802.3ad, balance-tlb, balance-alb) all
wind up with both arp_interval=0 (as it should be) and miimon=0, which
means the miimon monitor thread never actually runs. This is particularly
problematic for 802.3ad.
For example, from an LNST recipe I've set up:
$ modprobe bonding max_bonds=0"
$ echo "+t_bond0" > /sys/class/net/bonding_masters"
$ ip link set t_bond0 down"
$ echo "802.3ad" > /sys/class/net/t_bond0/bonding/mode"
$ ip link set ens1f1 down"
$ echo "+ens1f1" > /sys/class/net/t_bond0/bonding/slaves"
$ ip link set ens1f0 down"
$ echo "+ens1f0" > /sys/class/net/t_bond0/bonding/slaves"
$ ethtool -i t_bond0"
$ ip link set ens1f1 up"
$ ip link set ens1f0 up"
$ ip link set t_bond0 up"
$ ip addr add 192.168.9.1/24 dev t_bond0"
$ ip addr add 2002::1/64 dev t_bond0"
This bond comes up okay, but things look slightly suspect in
/proc/net/bonding/t_bond0 output:
$ grep -i mii /proc/net/bonding/t_bond0
MII Status: up
MII Polling Interval (ms): 0
MII Status: up
MII Status: up
Now, pull a cable on one of the ports in the bond, then reconnect it, and
you'll see:
Slave Interface: ens1f0
MII Status: down
Speed: 1000 Mbps
Duplex: full
I believe this became a major issue as of commit 4d2c0cda0744, which for
802.3ad bonds, sets slave->link = BOND_LINK_DOWN, with a comment about
relying on link monitoring via miimon to set it correctly, but since the
miimon work queue never runs, the link just stays marked down.
If we simply tweak bond_option_mode_set() slightly, we can check for the
non-arp modes having no miimon value set, and insert BOND_DEFAULT_MIIMON,
which gets things back in full working order. This problem exists as far
back as 4.14, and might be worth fixing in all stable trees since, though
the work-around is to simply specify an miimon value yourself.
Reported-by: Bob Ball <ball@umich.edu> Signed-off-by: Jarod Wilson <jarod@redhat.com> Acked-by: Mahesh Bandewar <maheshb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently nouveau doesn't actually expose the state debugfs file that's
usually provided for any modesetting driver that supports atomic, even
if nouveau is loaded with atomic=1. This is due to the fact that the
standard debugfs files that DRM creates for atomic drivers is called
when drm_get_pci_dev() is called from nouveau_drm.c. This happens well
before we've initialized the display core, which is currently
responsible for setting the DRIVER_ATOMIC cap.
So, move the atomic option into nouveau_drm.c and just add the
DRIVER_ATOMIC cap whenever it's enabled on the kernel commandline. This
shouldn't cause any actual issues, as the atomic ioctl will still fail
as expected even if the display core doesn't disable it until later in
the init sequence. This also provides the added benefit of being able to
use the state debugfs file to check the current display state even if
clients aren't allowed to modify it through anything other than the
legacy ioctls.
Additionally, disable the DRIVER_ATOMIC cap in nv04's display core, as
this was already disabled there previously.
Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Ben Skeggs <bskeggs@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A CRTC being enabled doesn't mean it's on! It doesn't even necessarily
mean it's being used. This fixes runtime PM leaks on the P50 I've got
next to me.
Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Ben Skeggs <bskeggs@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A VM which has:
- a DMA capable device passed through to it (eg. network card);
- running a malicious kernel that ignores H_PUT_TCE failure;
- capability of using IOMMU pages bigger that physical pages
can create an IOMMU mapping that exposes (for example) 16MB of
the host physical memory to the device when only 64K was allocated to the VM.
The remaining 16MB - 64K will be some other content of host memory, possibly
including pages of the VM, but also pages of host kernel memory, host
programs or other VMs.
The attacking VM does not control the location of the page it can map,
and is only allowed to map as many pages as it has pages of RAM.
We already have a check in drivers/vfio/vfio_iommu_spapr_tce.c that
an IOMMU page is contained in the physical page so the PCI hardware won't
get access to unassigned host memory; however this check is missing in
the KVM fastpath (H_PUT_TCE accelerated code). We were lucky so far and
did not hit this yet as the very first time when the mapping happens
we do not have tbl::it_userspace allocated yet and fall back to
the userspace which in turn calls VFIO IOMMU driver, this fails and
the guest does not retry,
This stores the smallest preregistered page size in the preregistered
region descriptor and changes the mm_iommu_xxx API to check this against
the IOMMU page size.
This calculates maximum page size as a minimum of the natural region
alignment and compound page size. For the page shift this uses the shift
returned by find_linux_pte() which indicates how the page is mapped to
the current userspace - if the page is huge and this is not a zero, then
it is a leaf pte and the page is mapped within the range.
The MIPS implementation of pci_resource_to_user() introduced in v3.12 by
commit 4c2924b725fb ("MIPS: PCI: Use pci_resource_to_user to map pci
memory space properly") incorrectly sets *end to the address of the
byte after the resource, rather than the last byte of the resource.
This results in userland seeing resources as a byte larger than they
actually are, for example a 32 byte BAR will be reported by a tool such
as lspci as being 33 bytes in size:
Region 2: I/O ports at 1000 [disabled] [size=33]
Correct this by subtracting one from the calculated end address,
reporting the correct address to userland.
Signed-off-by: Paul Burton <paul.burton@mips.com> Reported-by: Rui Wang <rui.wang@windriver.com> Fixes: 4c2924b725fb ("MIPS: PCI: Use pci_resource_to_user to map pci memory space properly") Cc: James Hogan <jhogan@kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Wolfgang Grandegger <wg@grandegger.com> Cc: linux-mips@linux-mips.org Cc: stable@vger.kernel.org # v3.12+
Patchwork: https://patchwork.linux-mips.org/patch/19829/ Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Philip reports:
seems adding "cifs: Fix slab-out-of-bounds in send_set_info() on SMB2
ACE setting" (commit 748144f) [1] created a regression within linux
v4.14 kernel series. Writing to a mounted cifs either freezes on writing
or crashes the PC. A more detailed explanation you may find in our
forums [2]. Reverting the patch, seems to "fix" it. Thoughts?
[2] https://forum.manjaro.org/t/53250
Reported-by: Philip Müller <philm@manjaro.org> Cc: Jianhong Yin <jiyin@redhat.com> Cc: Stefano Brivio <sbrivio@redhat.com> Cc: Aurelien Aptel <aaptel@suse.com> Cc: Steve French <stfrench@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Don't rely on event interrupt (EINT) bit alone to detect pending port
change in resume. If no change event is detected the host may be suspended
again, oterwise roothubs are resumed.
There is a lag in xHC setting EINT. If we don't notice the pending change
in resume, and the controller is runtime suspeded again, it causes the
event handler to assume host is dead as it will fail to read xHC registers
once PCI puts the controller to D3 state.
[ 268.520969] xhci_hcd: xhci_resume: starting port polling.
[ 268.520985] xhci_hcd: xhci_hub_status_data: stopping port polling.
[ 268.521030] xhci_hcd: xhci_suspend: stopping port polling.
[ 268.521040] xhci_hcd: // Setting command ring address to 0x349bd001
[ 268.521139] xhci_hcd: Port Status Change Event for port 3
[ 268.521149] xhci_hcd: resume root hub
[ 268.521163] xhci_hcd: port resume event for port 3
[ 268.521168] xhci_hcd: xHC is not running.
[ 268.521174] xhci_hcd: handle_port_status: starting port polling.
[ 268.596322] xhci_hcd: xhci_hc_died: xHCI host controller not responding, assume dead
The EINT lag is described in a additional note in xhci specs 4.19.2:
"Due to internal xHC scheduling and system delays, there will be a lag
between a change bit being set and the Port Status Change Event that it
generated being written to the Event Ring. If SW reads the PORTSC and
sees a change bit set, there is no guarantee that the corresponding Port
Status Change Event has already been written into the Event Ring."
On 64-bit servers, SPRN_SPRG3 and its userspace read-only mirror
SPRN_USPRG3 are used as userspace VDSO write and read registers
respectively.
SPRN_SPRG3 is lost when we enter stop4 and above, and is currently not
restored. As a result, any read from SPRN_USPRG3 returns zero on an
exit from stop4 (Power9 only) and above.
Thus in this situation, on POWER9, any call from sched_getcpu() always
returns zero, as on powerpc, we call __kernel_getcpu() which relies
upon SPRN_USPRG3 to report the CPU and NUMA node information.
Fix this by restoring SPRN_SPRG3 on wake up from a deep stop state
with the sprg_vdso value that is cached in PACA.
Fixes: e1c1cfed5432 ("powerpc/powernv: Save/Restore additional SPRs for stop4 cpuidle") Cc: stable@vger.kernel.org # v4.14+ Reported-by: Florian Weimer <fweimer@redhat.com> Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
mii_nway_restart is not pm aware which results in a rtnl deadlock.
Implement mii_nway_restart manual by setting BMCR_ANRESTART if
BMCR_ANENABLE is set.
To reproduce:
* plug an asix based usb network interface
* wait until the device enters PM (~5 sec)
* `ip link set eth1 up` will never return
Fixes: d9fe64e51114 ("net: asix: Add in_pm parameter") Signed-off-by: Alexander Couzens <lynxis@fe80.eu> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>