Qu Wenruo [Thu, 25 Mar 2021 07:14:44 +0000 (15:14 +0800)]
btrfs: make set_btree_ioerr accept extent buffer and be subpage compatible
Current set_btree_ioerr() only accepts @page parameter and grabs extent
buffer from page::private. This works fine for sector size == PAGE_SIZE
case, but not for subpage case.
Add an extra parameter, @eb, for callers to pass extent buffer to this
function, so that subpage code can reuse this function.
And also add subpage special handling to update
btrfs_subpage::error_bitmap.
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 25 Mar 2021 07:14:43 +0000 (15:14 +0800)]
btrfs: make set/clear_extent_buffer_dirty() subpage compatible
For set_extent_buffer_dirty() to support subpage sized metadata, just
call btrfs_page_set_dirty() to handle both cases.
For clear_extent_buffer_dirty(), it needs to clear the page dirty if and
only if all extent buffers in the page range are no longer dirty.
Also do the same for page error.
This is pretty different from the existing clear_extent_buffer_dirty()
routine, so add a new helper function,
clear_subpage_extent_buffer_dirty() to do this for subpage metadata.
Also since the main part of clearing page dirty code is still the same,
extract that into btree_clear_page_dirty() so that it can be utilized
for both cases.
But there is a special race between set_extent_buffer_dirty() and
clear_extent_buffer_dirty(), where we can clear the page dirty.
[POSSIBLE RACE WINDOW]
For the race window between clear_subpage_extent_buffer_dirty() and
set_extent_buffer_dirty(), due to the fact that we can't call
clear_page_dirty_for_io() under subpage spin lock, we can race like
below:
T1 (eb1 in the same page) | T2 (eb2 in the same page)
-------------------------------+------------------------------
set_extent_buffer_dirty() | clear_extent_buffer_dirty()
|- was_dirty = false; | |- clear_subpagE_extent_buffer_dirty()
| | |- btrfs_clear_and_test_dirty()
| | | Since eb2 is the last dirty page
| | | we got:
| | | last == true;
| | |
|- btrfs_page_set_dirty() | |
| We set the page dirty and | |
| subpage dirty bitmap | |
| | |- if (last)
| | | Since we don't have subpage lock
| | | held, now @last is no longer
| | | correct
| | |- btree_clear_page_dirty()
| | Now PageDirty == false, even if
| | we have dirty_bitmap not zero.
|- ASSERT(PageDirty()); |
^^^^ CRASH
The solution here is to also lock the eb->pages[0] for subpage case of
set_extent_buffer_dirty(), to prevent racing with
clear_extent_buffer_dirty().
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 25 Mar 2021 07:14:42 +0000 (15:14 +0800)]
btrfs: support page uptodate assertions in subpage mode
There are quite some assert checks on page uptodate in extent buffer
write accessors. They ensure the destination page is already uptodate.
This is fine for regular sector size case, but not for subpage case, as
for subpage we only mark the page uptodate if the page contains no hole
and all its extent buffers are uptodate.
So instead of checking PageUptodate(), for subpage case we check the
uptodate bitmap of btrfs_subpage structure.
To make the check more elegant, introduce a helper,
assert_eb_page_uptodate() to do the check for both subpage and regular
sector size cases.
Qu Wenruo [Thu, 25 Mar 2021 07:14:41 +0000 (15:14 +0800)]
btrfs: make alloc_extent_buffer() check subpage dirty bitmap
In alloc_extent_buffer(), we make sure that the newly allocated page is
never dirty.
This is fine for sector size == PAGE_SIZE case, but for subpage it's
possible that one extent buffer in the page is dirty, thus the whole
page is marked dirty, and could cause false alert.
To support subpage, call btrfs_page_test_dirty() to handle both cases.
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 25 Mar 2021 07:14:40 +0000 (15:14 +0800)]
btrfs: subpage: support metadata checksum calculation at write time
Add a new helper, csum_dirty_subpage_buffers(), to iterate through all
dirty extent buffers in one bvec.
Also extract the code of calculating csum for one extent buffer into
csum_one_extent_buffer(), so that both the existing csum_dirty_buffer()
and the new csum_dirty_subpage_buffers() can reuse the same routine.
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 25 Mar 2021 07:14:39 +0000 (15:14 +0800)]
btrfs: subpage: do more sanity checks on metadata page dirtying
For btree_set_page_dirty(), we should also check the extent buffer
sanity for subpage support.
Unlike the regular sector size case, since one page can contain multiple
extent buffers, we need to make sure there is at least one dirty extent
buffer in the page.
So this patch will iterate through the btrfs_subpage::dirty_bitmap
to get the extent buffers, and check if any dirty extent buffer in the page
range has EXTENT_BUFFER_DIRTY and proper refs.
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 25 Mar 2021 07:14:38 +0000 (15:14 +0800)]
btrfs: subpage: introduce helpers for writeback status
Introduces the following functions to handle subpage writeback status:
- btrfs_subpage_set_writeback()
- btrfs_subpage_clear_writeback()
- btrfs_subpage_test_writeback()
These helpers can only be called when the range is ensured to be
inside the page.
- btrfs_page_set_writeback()
- btrfs_page_clear_writeback()
- btrfs_page_test_writeback()
These helpers can handle both regular sector size and subpage without
problem.
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 25 Mar 2021 07:14:37 +0000 (15:14 +0800)]
btrfs: subpage: introduce helpers for dirty status
Introduce the following functions to handle subpage dirty status:
- btrfs_subpage_set_dirty()
- btrfs_subpage_clear_dirty()
- btrfs_subpage_test_dirty()
These helpers can only be called when the range is ensured to be
inside the page.
- btrfs_page_set_dirty()
- btrfs_page_clear_dirty()
- btrfs_page_test_dirty()
These helpers can handle both regular sector size and subpage without
problem.
Thus they would be used to replace PageDirty() related calls in
later patches.
There is one special point to note here, just like set_page_dirty() and
clear_page_dirty_for_io(), btrfs_*page_set_dirty() and
btrfs_*page_clear_dirty() must be called with page locked.
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 25 Mar 2021 07:14:34 +0000 (15:14 +0800)]
btrfs: use min() to replace open-code in btrfs_invalidatepage()
In btrfs_invalidatepage() we introduce a temporary variable, new_len, to
update ordered->truncated_len. But we can use min() to replace it
completely and no need for the variable.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 25 Mar 2021 07:14:33 +0000 (15:14 +0800)]
btrfs: add sysfs interface for supported sectorsize
Export supported sector sizes in /sys/fs/btrfs/features/supported_sectorsizes.
Currently all architectures have PAGE_SIZE, There's some disparity
between read-only and read-write support but that will be unified in the
future so there's only one file exporting the size.
The read-only support for systems with 64K pages also works for 4K
sector size.
This new sysfs interface would help eg. mkfs.btrfs to print more
accurate warnings about potentially incompatible option combinations.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Wed, 31 Mar 2021 10:56:21 +0000 (11:56 +0100)]
btrfs: improve btree readahead for full send operations
Currently a full send operation uses the standard btree readahead when
iterating over the subvolume/snapshot btree, which despite bringing good
performance benefits, it could be improved in a few aspects for use cases
such as full send operations, which are guaranteed to visit every node
and leaf of a btree, in ascending and sequential order. The limitations
of that standard btree readahead implementation are the following:
1) It only triggers readahead for leaves that are physically close
to the leaf being read, within a 64K range;
2) It only triggers readahead for the next or previous leaves if the
leaf being read is not currently in memory;
3) It never triggers readahead for nodes.
So add a new readahead mode that addresses all these points and use it
for full send operations.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of RAM:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
Filipe Manana [Wed, 31 Mar 2021 10:55:50 +0000 (11:55 +0100)]
btrfs: fix exhaustion of the system chunk array due to concurrent allocations
When we are running out of space for updating the chunk tree, that is,
when we are low on available space in the system space info, if we have
many task concurrently allocating block groups, via fallocate for example,
many of them can end up all allocating new system chunks when only one is
needed. In extreme cases this can lead to exhaustion of the system chunk
array, which has a size limit of 2048 bytes, and results in a transaction
abort with errno EFBIG, producing a trace in dmesg like the following,
which was triggered on a PowerPC machine with a node/leaf size of 64K:
The following steps explain how we can end up in this situation:
1) Task A is at check_system_chunk(), either because it is allocating a
new data or metadata block group, at btrfs_chunk_alloc(), or because
it is removing a block group or turning a block group RO. It does not
matter why;
2) Task A sees that there is not enough free space in the system
space_info object, that is 'left' is < 'thresh'. And at this point
the system space_info has a value of 0 for its 'bytes_may_use'
counter;
3) As a consequence task A calls btrfs_alloc_chunk() in order to allocate
a new system block group (chunk) and then reserves 'thresh' bytes in
the chunk block reserve with the call to btrfs_block_rsv_add(). This
changes the chunk block reserve's 'reserved' and 'size' counters by an
amount of 'thresh', and changes the 'bytes_may_use' counter of the
system space_info object from 0 to 'thresh'.
Also during its call to btrfs_alloc_chunk(), we end up increasing the
value of the 'total_bytes' counter of the system space_info object by
8MiB (the size of a system chunk stripe). This happens through the
call chain:
4) After it finishes the first phase of the block group allocation, at
btrfs_chunk_alloc(), task A unlocks the chunk mutex;
5) At this point the new system block group was added to the transaction
handle's list of new block groups, but its block group item, device
items and chunk item were not yet inserted in the extent, device and
chunk trees, respectively. That only happens later when we call
btrfs_finish_chunk_alloc() through a call to
btrfs_create_pending_block_groups();
Note that only when we update the chunk tree, through the call to
btrfs_finish_chunk_alloc(), we decrement the 'reserved' counter
of the chunk block reserve as we COW/allocate extent buffers,
through:
If we end up COWing less chunk btree nodes/leaves than expected, which
is the typical case since the amount of space we reserve is always
pessimistic to account for the worst possible case, we release the
unused space through:
But before task A gets into btrfs_create_pending_block_groups()...
6) Many other tasks start allocating new block groups through fallocate,
each one does the first phase of block group allocation in a
serialized way, since btrfs_chunk_alloc() takes the chunk mutex
before calling check_system_chunk() and btrfs_alloc_chunk().
However before everyone enters the final phase of the block group
allocation, that is, before calling btrfs_create_pending_block_groups(),
new tasks keep coming to allocate new block groups and while at
check_system_chunk(), the system space_info's 'bytes_may_use' keeps
increasing each time a task reserves space in the chunk block reserve.
This means that eventually some other task can end up not seeing enough
free space in the system space_info and decide to allocate yet another
system chunk.
This may repeat several times if yet more new tasks keep allocating
new block groups before task A, and all the other tasks, finish the
creation of the pending block groups, which is when reserved space
in excess is released. Eventually this can result in exhaustion of
system chunk array in the superblock, with btrfs_add_system_chunk()
returning EFBIG, resulting later in a transaction abort.
Even when we don't reach the extreme case of exhausting the system
array, most, if not all, unnecessarily created system block groups
end up being unused since when finishing creation of the first
pending system block group, the creation of the following ones end
up not needing to COW nodes/leaves of the chunk tree, so we never
allocate and deallocate from them, resulting in them never being
added to the list of unused block groups - as a consequence they
don't get deleted by the cleaner kthread - the only exceptions are
if we unmount and mount the filesystem again, which adds any unused
block groups to the list of unused block groups, if a scrub is
run, which also adds unused block groups to the unused list, and
under some circumstances when using a zoned filesystem or async
discard, which may also add unused block groups to the unused list.
So fix this by:
*) Tracking the number of reserved bytes for the chunk tree per
transaction, which is the sum of reserved chunk bytes by each
transaction handle currently being used;
*) When there is not enough free space in the system space_info,
if there are other transaction handles which reserved chunk space,
wait for some of them to complete in order to have enough excess
reserved space released, and then try again. Otherwise proceed with
the creation of a new system chunk.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Tue, 23 Mar 2021 18:39:49 +0000 (18:39 +0000)]
btrfs: make reflinks respect O_SYNC O_DSYNC and S_SYNC flags
If we reflink to or from a file opened with O_SYNC/O_DSYNC or to/from a
file that has the S_SYNC attribute set, we totally ignore that and do not
durably persist the reflink changes. Since a reflink can change the data
readable from a file (and mtime/ctime, or a file size), it makes sense to
durably persist (fsync) the source and destination files/ranges.
The recently introduced test case generic/628, from fstests, exercises
these scenarios and currently fails without this change.
So make sure we fsync the source and destination files/ranges when either
of them was opened with O_SYNC/O_DSYNC or has the S_SYNC attribute set,
just like XFS already does.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Arnd Bergmann [Tue, 23 Mar 2021 14:31:19 +0000 (15:31 +0100)]
btrfs: zoned: bail out in btrfs_alloc_chunk for bad input
gcc complains that the ctl->max_chunk_size member might be used
uninitialized when none of the three conditions for initializing it in
init_alloc_chunk_ctl_policy_zoned() are true:
In function ‘init_alloc_chunk_ctl_policy_zoned’,
inlined from ‘init_alloc_chunk_ctl’ at fs/btrfs/volumes.c:5023:3,
inlined from ‘btrfs_alloc_chunk’ at fs/btrfs/volumes.c:5340:2:
include/linux/compiler-gcc.h:48:45: error: ‘ctl.max_chunk_size’ may be used uninitialized [-Werror=maybe-uninitialized]
4998 | ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
| ^~~
fs/btrfs/volumes.c: In function ‘btrfs_alloc_chunk’:
fs/btrfs/volumes.c:5316:32: note: ‘ctl’ declared here
5316 | struct alloc_chunk_ctl ctl;
| ^~~
If we ever get into this condition, something is seriously
wrong, as validity is checked in the callers
so the same logic as in init_alloc_chunk_ctl_policy_regular()
and a few other places should be applied. This avoids both further
data corruption, and the compile-time warning.
Fixes: 1cd6121f2a38 ("btrfs: zoned: implement zoned chunk allocator") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
BingJing Chang [Thu, 25 Mar 2021 01:56:22 +0000 (09:56 +0800)]
btrfs: fix a potential hole punching failure
In commit d77815461f04 ("btrfs: Avoid trucating page or punching hole
in a already existed hole."), existing holes can be skipped by calling
find_first_non_hole() to adjust start and len. However, if the given len
is invalid and large, when an EXTENT_MAP_HOLE extent is found, len will
not be set to zero because (em->start + em->len) is less than
(start + len). Then the ret will be 1 but len will not be set to 0.
The propagated non-zero ret will result in fallocate failure.
In the while-loop of btrfs_replace_file_extents(), len is not updated
every time before it calls find_first_non_hole(). That is, after
btrfs_drop_extents() successfully drops the last non-hole file extent,
it may fail with ENOSPC when attempting to drop a file extent item
representing a hole. The problem can happen. After it calls
find_first_non_hole(), the cur_offset will be adjusted to be larger
than or equal to end. However, since the len is not set to zero, the
break-loop condition (ret && !len) will not be met. After it leaves the
while-loop, fallocate will return 1, which is an unexpected return
value.
We're not able to construct a reproducible way to let
btrfs_drop_extents() fail with ENOSPC after it drops the last non-hole
file extent but with remaining holes left. However, it's quite easy to
fix. We just need to update and check the len every time before we call
find_first_non_hole(). To make the while loop more readable, we also
pull the variable updates to the bottom of loop like this:
while (cur_offset < end) {
...
// update cur_offset & len
// advance cur_offset & len in hole-punching case if needed
}
Reported-by: Robbie Ko <robbieko@synology.com> Fixes: d77815461f04 ("btrfs: Avoid trucating page or punching hole in a already existed hole.") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Robbie Ko <robbieko@synology.com> Reviewed-by: Chung-Chiang Cheng <cccheng@synology.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: David Sterba <dsterba@suse.com>
Naohiro Aota [Wed, 24 Mar 2021 14:23:11 +0000 (23:23 +0900)]
btrfs: zoned: move log tree node allocation out of log_root_tree->log_mutex
Commit 6e37d2459941 ("btrfs: zoned: fix deadlock on log sync") pointed out
a deadlock warning and removed mutex_{lock,unlock} of fs_info::tree_root->log_mutex.
While it looks like it always cause a deadlock, we didn't see actual
deadlock in fstests runs. The reason is log_root_tree->log_mutex !=
fs_info->tree_root->log_mutex, not taking the same lock. So, the warning
was actually a false-positive.
Since btrfs_alloc_log_tree_node() is protected only by
fs_info->tree_root->log_mutex, we can (and should) move the code out of
the lock scope of log_root_tree->log_mutex and silence the warning.
Fixes: 6e37d2459941 ("btrfs: zoned: fix deadlock on log sync") Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
Josef Bacik [Wed, 24 Mar 2021 13:44:21 +0000 (09:44 -0400)]
btrfs: use percpu_read_positive instead of sum_positive for need_preempt
Looking at perf data for a fio workload I noticed that we were spending
a pretty large chunk of time (around 5%) doing percpu_counter_sum() in
need_preemptive_reclaim. This is silly, as we only want to know if we
have more ordered than delalloc to see if we should be counting the
delayed items in our threshold calculation. Change this to
percpu_read_positive() to avoid the overhead.
I ran this through fsperf to validate the changes, obviously the latency
numbers in dbench and fio are quite jittery, so take them as you wish,
but overall the improvements on throughput, iops, and bw are all
positive. Each test was run two times, the given value is the average
of both runs for their respective column.
Filipe Manana [Fri, 26 Mar 2021 13:14:41 +0000 (13:14 +0000)]
btrfs: update outdated comment at btrfs_replace_file_extents()
There is a comment at btrfs_replace_file_extents() that mentions that we
set the full sync flag on an inode when cloning into a file with a size
greater than or equals to 16MiB, through try_release_extent_mapping() when
we truncate the page cache after replacing file extents during a clone
operation.
That is not true anymore since commit 5e548b32018d96 ("btrfs: do not set
the full sync flag on the inode during page release"), so update the
comment to remove that part and rephrase it slightly to make it more
clear why the full sync flag is set at btrfs_replace_file_extents().
Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Tue, 16 Mar 2021 16:54:13 +0000 (16:54 +0000)]
btrfs: update outdated comment at btrfs_orphan_cleanup()
btrfs_orphan_cleanup() has a comment referring to find_dead_roots, but
function does not exists since commit cb517eabba4f10 ("Btrfs: cleanup the
similar code of the fs root read"). What we use now to find and load dead
roots is btrfs_find_orphan_roots(). So update the comment and make it a
bit more detailed about why we can not delete an orphan item for a root.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Thu, 11 Mar 2021 14:31:13 +0000 (14:31 +0000)]
btrfs: update debug message when checking seq number of a delayed ref
We used to encode two different numbers in the tree mod log counter used
for sequence numbers, one in the upper 32 bits and the other one in the
lower 32 bits. However that is no longer the case, we stopped doing that
since commit fcebe4562dec83 ("Btrfs: rework qgroup accounting").
So update the debug message at btrfs_check_delayed_seq to stop extracting
the two 32 bits counters and print instead the 64 bits sequence numbers.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Thu, 11 Mar 2021 14:31:12 +0000 (14:31 +0000)]
btrfs: add and use helper to get lowest sequence number for the tree mod log
There are two places outside the tree mod log module that extract the
lowest sequence number of the tree mod log. These places end up
duplicating code and open coding the logic and internal implementation
details of the tree mod log. So add a helper to the tree mod log module
and header that returns the lowest sequence number or 0 if there aren't
any tree mod log users at the moment.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Thu, 11 Mar 2021 14:31:11 +0000 (14:31 +0000)]
btrfs: remove unnecessary leaf check at btrfs_tree_mod_log_free_eb()
At btrfs_tree_mod_log_free_eb() we check if we are dealing with a leaf,
and if so, return immediately and do nothing. However this check can be
removed, because after it we call tree_mod_need_log(), which returns
false when given an extent buffer that corresponds to a leaf.
So just remove the leaf check and pass the extent buffer to
tree_mod_need_log().
Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Thu, 11 Mar 2021 14:31:10 +0000 (14:31 +0000)]
btrfs: use the new bit BTRFS_FS_TREE_MOD_LOG_USERS at btrfs_free_tree_block()
Instead of exposing implementation details of the tree mod log to check
if there are active tree mod log users at btrfs_free_tree_block(), use
the new bit BTRFS_FS_TREE_MOD_LOG_USERS for fs_info->flags instead. This
way extent-tree.c does not need to known about any of the internals of
the tree mod log and avoids taking a lock unnecessarily as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Thu, 11 Mar 2021 14:31:09 +0000 (14:31 +0000)]
btrfs: use a bit to track the existence of tree mod log users
The tree modification log functions are called very frequently, basically
they are called every time a btree is modified (a pointer added or removed
to a node, a new root for a btree is set, etc). Because of that, to avoid
heavy lock contention on the lock that protects the list of tree mod log
users, we have checks that test the emptiness of the list with a full
memory barrier before the checks, so that when there are no tree mod log
users we avoid taking the lock.
Replace the memory barrier and list emptiness check with a test for a new
bit set at fs_info->flags. This bit is used to indicate when there are
tree mod log users, set whenever a user is added to the list and cleared
when the last user is removed from the list. This makes the intention a
bit more obvious and possibly more efficient (assuming test_bit() may be
cheaper than a full memory barrier on some architectures).
Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Thu, 11 Mar 2021 14:31:07 +0000 (14:31 +0000)]
btrfs: move the tree mod log code into its own file
The tree modification log, which records modifications done to btrees, is
quite large and currently spread all over ctree.c, which is a huge file
already.
To make things better organized, move all that code into its own separate
source and header files. Functions and definitions that are used outside
of the module (mostly by ctree.c) are renamed so that they start with a
"btrfs_" prefix. Everything else remains unchanged.
This makes it easier to go over the tree modification log code every
time I need to go read it to fix a bug.
Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ] Signed-off-by: David Sterba <dsterba@suse.com>
Ira Weiny [Wed, 17 Feb 2021 02:48:26 +0000 (18:48 -0800)]
btrfs: integrity-checker: convert block context kmap's to kmap_local_page
btrfsic_read_block() (which calls kmap()) and
btrfsic_release_block_ctx() (which calls kunmap()) are always called
within a single thread of execution.
Therefore the mappings created within these calls can be a thread local
mapping.
Convert the kmap() of bloc_ctx->pagev to kmap_local_page(). Luckily the
unmap loops backwards through the array pointer so no adjustment needs
to be made to the unmapping order.
Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Ira Weiny [Wed, 17 Feb 2021 02:48:24 +0000 (18:48 -0800)]
btrfs: raid56: convert kmaps to kmap_local_page
These kmaps are thread local and don't need to be atomic. So they can use
the more efficient kmap_local_page(). However, the mapping of pages in
the stripes and the additional parity and qstripe pages are a bit
trickier because the unmapping must occur in the opposite order from the
mapping. Furthermore, the pointer array in __raid_recover_end_io() may
get reordered.
Convert these calls to kmap_local_page() taking care to reverse the
unmappings of any page arrays as well as being careful with the mappings
of any special pages such as the parity and qstripe pages.
Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Ira Weiny [Wed, 17 Feb 2021 02:48:23 +0000 (18:48 -0800)]
btrfs: convert kmap to kmap_local_page, simple cases
Use a simple coccinelle script to help convert the most common
kmap()/kunmap() patterns to kmap_local_page()/kunmap_local().
Note that some kmaps which were caught by this script needed to be
handled by hand because of the strict unmapping order of kunmap_local()
so they are not included in this patch. But this script got us started.
There's another temp variable added for the final length write to the
first page so it does not interfere with cpage_out that is used for
mapping other pages.
The development of this patch was aided by the follow script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap and replace with kmap_local_page then mark kunmap
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
Filipe Manana [Tue, 23 Feb 2021 12:08:49 +0000 (12:08 +0000)]
btrfs: remove stale comment and logic from btrfs_inode_in_log()
Currently btrfs_inode_in_log() checks the list of modified extents of the
inode, and has a comment mentioning why, as it used to be necessary to
make sure if we did something like the following:
mmap write range A
mmap write range B
msync range A (ranged fsync)
msync range B (ranged fsync)
we ended up with both ranges being logged.
If we did not check it, then the second fsync would do nothing because
btrfs_inode_in_log() would return true. This was added in 125c4cf9f37c98
("Btrfs: set inode's logged_trans/last_log_commit after ranged fsync") and
test case generic/325 from fstests exercises that scenario.
However, as of commit 487781796d3022 ("btrfs: make fast fsyncs wait only
for writeback"), every ranged fsync is now turned into a full ranged fsync
(operates on the range from 0 to LLONG_MAX), so it is now pointless to
test of emptiness of the list of modified extents, and the comment is
clearly outdated.
So just remove the comment and list emptiness check, while also changing
the function's return type to be a boolean instead of an integer.
In case one day we get support for ranged fsyncs again, it will be easy
to notice the check is necessary again, because it will make generic/325
always fail.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Tue, 23 Feb 2021 12:08:48 +0000 (12:08 +0000)]
btrfs: fix race between marking inode needs to be logged and log syncing
We have a race between marking that an inode needs to be logged, either
at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between
btrfs_sync_log(). The following steps describe how the race happens.
1) We are at transaction N;
2) Inode I was previously fsynced in the current transaction so it has:
inode->logged_trans set to N;
3) The inode's root currently has:
root->log_transid set to 1
root->last_log_commit set to 0
Which means only one log transaction was committed to far, log
transaction 0. When a log tree is created we set ->log_transid and
->last_log_commit of its parent root to 0 (at btrfs_add_log_tree());
4) One more range of pages is dirtied in inode I;
5) Some task A starts an fsync against some other inode J (same root), and
so it joins log transaction 1.
Before task A calls btrfs_sync_log()...
6) Task B starts an fsync against inode I, which currently has the full
sync flag set, so it starts delalloc and waits for the ordered extent
to complete before calling btrfs_inode_in_log() at btrfs_sync_file();
7) During ordered extent completion we have btrfs_update_inode() called
against inode I, which in turn calls btrfs_set_inode_last_trans(),
which does the following:
So ->last_trans is set to N and ->last_sub_trans set to 1.
But before setting ->last_log_commit...
8) Task A is at btrfs_sync_log():
- it increments root->log_transid to 2
- starts writeback for all log tree extent buffers
- waits for the writeback to complete
- writes the super blocks
- updates root->last_log_commit to 1
It's a lot of slow steps between updating root->log_transid and
root->last_log_commit;
9) The task doing the ordered extent completion, currently at
btrfs_set_inode_last_trans(), then finally runs:
Which results in inode->last_log_commit being set to 1.
The ordered extent completes;
10) Task B is resumed, and it calls btrfs_inode_in_log() which returns
true because we have all the following conditions met:
inode->logged_trans == N which matches fs_info->generation &&
inode->last_subtrans (1) <= inode->last_log_commit (1) &&
inode->last_subtrans (1) <= root->last_log_commit (1) &&
list inode->extent_tree.modified_extents is empty
And as a consequence we return without logging the inode, so the
existing logged version of the inode does not point to the extent
that was written after the previous fsync.
It should be impossible in practice for one task be able to do so much
progress in btrfs_sync_log() while another task is at
btrfs_set_inode_last_trans() right after it reads root->log_transid and
before it reads root->last_log_commit. Even if kernel preemption is enabled
we know the task at btrfs_set_inode_last_trans() can not be preempted
because it is holding the inode's spinlock.
However there is another place where we do the same without holding the
spinlock, which is in the memory mapped write path at:
So with preemption happening after setting ->last_sub_trans and before
setting ->last_log_commit, it is less of a stretch to have another task
do enough progress at btrfs_sync_log() such that the task doing the memory
mapped write ends up with ->last_sub_trans and ->last_log_commit set to
the same value. It is still a big stretch to get there, as the task doing
btrfs_sync_log() has to start writeback, wait for its completion and write
the super blocks.
So fix this in two different ways:
1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the
value of ->last_sub_trans minus 1;
2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just
like we do for buffered and direct writes at btrfs_file_write_iter(),
which is all we need to make sure multiple writes and fsyncs to an
inode in the same transaction never result in an fsync missing that
the inode changed and needs to be logged. Turn this into a helper
function and use it both at btrfs_page_mkwrite() and at
btrfs_file_write_iter() - this also fixes the problem that at
btrfs_page_mkwrite() we were setting those fields without the
protection of the inode's spinlock.
This is an extremely unlikely race to happen in practice.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Tue, 23 Feb 2021 12:08:47 +0000 (12:08 +0000)]
btrfs: fix race between memory mapped writes and fsync
When doing an fsync we flush all delalloc, lock the inode (VFS lock), flush
any new delalloc that might have been created before taking the lock and
then wait either for the ordered extents to complete or just for the
writeback to complete (depending on whether the full sync flag is set or
not). We then start logging the inode and assume that while we are doing it
no one else is touching the inode's file extent items (or adding new ones).
That is generally true because all operations that modify an inode acquire
the inode's lock first, including buffered and direct IO writes. However
there is one exception: memory mapped writes, which do not and can not
acquire the inode's lock.
This can cause two types of issues: ending up logging file extent items
with overlapping ranges, which is detected by the tree checker and will
result in aborting the transaction when starting writeback for a log
tree's extent buffers, or a silent corruption where we log a version of
the file that never existed.
Scenario 1 - logging overlapping extents
The following steps explain how we can end up with file extents items with
overlapping ranges in a log tree due to a race between a fsync and memory
mapped writes:
1) Task A starts an fsync on inode X, which has the full sync runtime flag
set. First it starts by flushing all delalloc for the inode;
2) Task A then locks the inode and flushes any other delalloc that might
have been created after the previous flush and waits for all ordered
extents to complete;
3) In the inode's root we have the following leaf:
The last file extent item in leaf N covers the file range from 640K to
768K;
4) Task B does a memory mapped write for the page corresponding to the
file range from 764K to 768K;
5) Task A starts logging the inode. At copy_inode_items_to_log() it uses
btrfs_search_forward() to search for leafs modified in the current
transaction that contain items for the inode. It finds leaf N and copies
all the inode items from that leaf into the log tree.
Now the log tree has a copy of the last file extent item from leaf N.
At the end of the while loop at copy_inode_items_to_log(), we have the
minimum key set to:
Then we increment the key's offset by 1 so that the next call to
btrfs_search_forward() leaves us at the first key greater than the key
we just processed.
But before btrfs_search_forward() is called again...
6) Dellaloc for the page at offset 764K, dirtied by task B, is started.
It can be started for several reasons:
- The async reclaim task is attempting to satisfy metadata or data
reservation requests, and it has reached a point where it decided
to flush delalloc;
- Due to memory pressure the VMM triggers writeback of dirty pages;
- The system call sync_file_range(2) is called from user space.
7) When the respective ordered extent completes, it trims the length of
the existing file extent item for file offset 640K from 128K to 124K,
and a new file extent item is added with a key offset of 764K and a
length of 4K;
8) Task A calls btrfs_search_forward(), which returns us a path pointing
to the leaf (can be leaf N or some other) containing the new file extent
item for file offset 764K.
We end up copying this item to the log tree, which overlaps with the
last copied file extent item, which covers the file range from 640K to
768K.
When writeback is triggered for log tree's extent buffers, the issue
will be detected by the tree checker which will dump a trace and an
error message on dmesg/syslog. If the writeback is triggered when
syncing the log, which typically is, then we also end up aborting the
current transaction.
This is the same type of problem fixed in 0c713cbab6200b ("Btrfs: fix race
between ranged fsync and writeback of adjacent ranges").
Scenario 2 - logging a version of the file that never existed
This scenario only happens when using the NO_HOLES feature and results in
a silent corruption, in the sense that is not detectable by 'btrfs check'
or the tree checker:
1) We have an inode I with a size of 1M and two file extent items, one
covering an extent with disk_bytenr == X for the file range [0, 512K)
and another one covering another extent with disk_bytenr == Y for the
file range [512K, 1M);
2) A hole is punched for the file range [512K, 1M);
3) Task A starts an fsync of inode I, which has the full sync runtime flag
set. It starts by flushing all existing delalloc, locks the inode (VFS
lock), starts any new delalloc that might have been created before
taking the lock and waits for all ordered extents to complete;
4) Some other task does a memory mapped write for the page corresponding to
the file range [640K, 644K) for example;
5) Task A then logs all items of the inode with the call to
copy_inode_items_to_log();
6) In the meanwhile delalloc for the range [640K, 644K) is started. It can
be started for several reasons:
- The async reclaim task is attempting to satisfy metadata or data
reservation requests, and it has reached a point where it decided
to flush delalloc;
- Due to memory pressure the VMM triggers writeback of dirty pages;
- The system call sync_file_range(2) is called from user space.
7) The ordered extent for the range [640K, 644K) completes and a file
extent item for that range is added to the subvolume tree, pointing
to a 4K extent with a disk_bytenr == Z;
8) Task A then calls btrfs_log_holes(), to scan for implicit holes in
the subvolume tree. It finds two implicit holes:
- one for the file range [512K, 640K)
- one for the file range [644K, 1M)
As a result we end up neither logging a hole for the range [640K, 644K)
nor logging the file extent item with a disk_bytenr == Z.
This means that if we have a power failure and replay the log tree we
end up getting the following file extent layout:
This can be fixed by serializing memory mapped writes with fsync, and there
are two ways to do it:
1) Make a fsync lock the entire file range, from 0 to (u64)-1 / LLONG_MAX
in the inode's io tree. This prevents the race but also blocks any reads
during the duration of the fsync, which has a negative impact for many
common workloads;
2) Make an fsync write lock the i_mmap_lock semaphore in the inode. This
semaphore was recently added by Josef's patch set:
btrfs: add a i_mmap_lock to our inode
btrfs: cleanup inode_lock/inode_unlock uses
btrfs: exclude mmaps while doing remap
btrfs: exclude mmap from happening during all fallocate operations
and is used to solve races between memory mapped writes and
clone/dedupe/fallocate. This also makes us have the same behaviour we
have regarding other writes (buffered and direct IO) and fsync - block
them while the inode logging is in progress.
This change uses the second approach due to the performance impact of the
first one.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Josef Bacik [Wed, 10 Feb 2021 22:14:36 +0000 (17:14 -0500)]
btrfs: exclude mmap from happening during all fallocate operations
There's a small window where a deadlock can happen between fallocate and
mmap. This is described in detail by Filipe:
"""
When doing a fallocate operation we lock the inode, flush delalloc within
the target range, wait for any ordered extents to complete and then lock
the file range. Before we lock the range and after we flush delalloc,
there is a time window where another task can come in and do a memory
mapped write for a page within the fallocate range.
This means that after fallocate locks the range, there can be a dirty page
in the range. More often than not, this does not cause any problem.
The exception is when we are low on available metadata space, because an
fallocate operation needs to start a transaction while holding the file
range locked, either through btrfs_prealloc_file_range() or through the
call to btrfs_fallocate_update_isize(). If that's the case, we can end up
in a deadlock. The following list of steps explains how that happens:
1) A fallocate operation starts, locks the inode, flushes delalloc in the
range and waits for ordered extents in the range to complete;
2) Before the fallocate task locks the file range, another task does a
memory mapped write for a page in the fallocate target range. This is
possible since memory mapped writes do not (and can not) lock the
inode;
3) The fallocate task locks the file range. At this point there is one
dirty page in the range (due to the memory mapped write);
4) When the fallocate task attempts to start a transaction, it blocks when
attempting to reserve metadata space, since we are low on available
metadata space. Before blocking (wait on its reservation ticket), it
starts the async reclaim task (if not running already);
5) The async reclaim task is not able to release space through any other
means, so it decides to flush delalloc for inodes with dirty pages.
It finds that the inode used in the fallocate operation has a dirty
page and therefore queues a job (fs_info->flush_workers workqueue) to
flush delalloc for that inode and waits on that job to complete;
6) The flush job blocks when attempting to lock the file range because
it is currently locked by the fallocate task;
7) The fallocate task keeps waiting for its metadata reservation, waiting
for a wakeup on its reservation ticket. The async reclaim task is
waiting on the flush job, which in turn is waiting for locking the file
range that is currently locked by the fallocate task. So unless some
other task is able to release enough metadata space, for example an
ordered extent for some other inode completes, we end up in a deadlock
between all these tasks.
When this happens stack traces like the following show up in dmesg/syslog:
Josef Bacik [Wed, 10 Feb 2021 22:14:35 +0000 (17:14 -0500)]
btrfs: exclude mmaps while doing remap
Darrick reported a potential issue to me where we could allow mmap
writes after validating a page range matched in the case of dedupe.
Generally we rely on lock page -> lock extent with the ordered flush to
protect us, but this is done after we check the pages because we use the
generic helpers, so we could modify the page in between doing the check
and locking the range.
There also exists a deadlock, as described by Filipe
"""
When cloning a file range, we lock the inodes, flush any delalloc within
the respective file ranges, wait for any ordered extents and then lock the
file ranges in both inodes. This means that right after we flush delalloc
and before we lock the file ranges, memory mapped writes can come in and
dirty pages in the file ranges of the clone operation.
Most of the time this is harmless and causes no problems. However, if we
are low on available metadata space, we can later end up in a deadlock
when starting a transaction to replace file extent items. This happens if
when allocating metadata space for the transaction, we need to wait for
the async reclaim thread to release space and the reclaim thread needs to
flush delalloc for the inode that got the memory mapped write and has its
range locked by the clone task.
Basically what happens is the following:
1) A clone operation locks inodes A and B, flushes delalloc for both
inodes in the respective file ranges and waits for any ordered extents
in those ranges to complete;
2) Before the clone task locks the file ranges, another task does a
memory mapped write (which does not lock the inode) for one of the
inodes of the clone operation. So now we have a dirty page in one of
the ranges used by the clone operation;
3) The clone operation locks the file ranges for inodes A and B;
4) Later, when iterating over the file extents of inode A, the clone
task attempts to start a transaction. There's not enough available
free metadata space, so the async reclaim task is started (if not
running already) and we wait for someone to wake us up on our
reservation ticket;
5) The async reclaim task is not able to release space by any other
means and decides to flush delalloc for the inode of the clone
operation;
6) The workqueue job used to flush the inode blocks when starting
delalloc for the inode, since the file range is currently locked by
the clone task;
7) But the clone task is waiting on its reservation ticket and the async
reclaim task is waiting on the flush job to complete, which can't
progress since the clone task has the file range locked. So unless
some other task is able to release space, for example an ordered
extent for some other inode completes, we have a deadlock between all
these tasks;
When this happens stack traces like the following show up in dmesg/syslog:
Josef Bacik [Wed, 10 Feb 2021 22:14:34 +0000 (17:14 -0500)]
btrfs: use btrfs_inode_lock/btrfs_inode_unlock inode lock helpers
A few places we intermix btrfs_inode_lock with a inode_unlock, and some
places we just use inode_lock/inode_unlock instead of btrfs_inode_lock.
None of these places are using this incorrectly, but as we adjust some
of these callers it would be nice to keep everything consistent, so
convert everybody to use btrfs_inode_lock/btrfs_inode_unlock.
Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Josef Bacik [Wed, 10 Feb 2021 22:14:33 +0000 (17:14 -0500)]
btrfs: add a i_mmap_lock to our inode
We need to be able to exclude page_mkwrite from happening concurrently
with certain operations. To facilitate this, add a i_mmap_lock to our
inode, down_read() it in our mkwrite, and add a new ILOCK flag to
indicate that we want to take the i_mmap_lock as well. I used pahole to
check the size of the btrfs_inode, the sizes are as follows
no lockdep:
before: 1120 (3 per 4k page)
after: 1160 (3 per 4k page)
lockdep:
before: 2072 (1 per 4k page)
after: 2224 (1 per 4k page)
We're slightly larger but it doesn't change how many objects we can fit
per page.
Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Goldwyn Rodrigues [Thu, 4 Mar 2021 15:06:25 +0000 (09:06 -0600)]
btrfs: remove force argument from run_delalloc_nocow()
force_cow can be calculated from inode and does not need to be passed as
an argument.
This simplifies run_delalloc_nocow() call from btrfs_run_delalloc_range()
A new function, should_nocow() checks if the range should be NOCOWed or
not. The function returns true iff either BTRFS_INODE_NODATA or
BTRFS_INODE_PREALLOC, but is not a defrag extent.
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Nikolay Borisov [Tue, 2 Mar 2021 10:44:40 +0000 (12:44 +0200)]
btrfs: don't opencode extent_changeset_free
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Mon, 1 Mar 2021 09:26:43 +0000 (09:26 +0000)]
btrfs: add btree read ahead for incremental send operations
Currently we do not do btree read ahead when doing an incremental send,
however we know that we will read and process any node or leaf in the
send root that has a generation greater than the generation of the parent
root. So triggering read ahead for such nodes and leafs is beneficial
for an incremental send.
This change does that, triggers read ahead of any node or leaf in the
send root that has a generation greater then the generation of the
parent root. As for the parent root, no readahead is triggered because
knowing in advance which nodes/leaves are going to be read is not so
linear and there's often a large time window between visiting nodes or
leaves of the parent root. So I opted to leave out the parent root,
and triggering read ahead for its nodes/leaves seemed to have not made
significant difference.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of ram:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
with $initial_file_count == 200000: 51 seconds
with $initial_file_count == 500000: 168 seconds
After this change, incremental send duration:
with $initial_file_count == 200000: 39 seconds (-26.7%)
with $initial_file_count == 500000: 125 seconds (-29.4%)
For $initial_file_count == 200000 there are 62600 nodes and leaves in the
btree of the first snapshot, and 77759 nodes and leaves in the btree of
the second snapshot. The root nodes were at level 2.
While for $initial_file_count == 500000 there are 152476 nodes and leaves
in the btree of the first snapshot, and 190511 nodes and leaves in the
btree of the second snapshot. The root nodes were at level 2 as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Filipe Manana [Mon, 1 Mar 2021 09:26:42 +0000 (09:26 +0000)]
btrfs: add btree read ahead for full send operations
When doing a full send we know that we are going to be reading every node
and leaf of the send root, so we benefit from enabling read ahead for the
btree.
This change enables read ahead for full send operations only, incremental
sends will have read ahead enabled in a different way by a separate patch.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of RAM:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
with $initial_file_count == 200000: 165 seconds
with $initial_file_count == 500000: 407 seconds
After this change, full send duration:
with $initial_file_count == 200000: 149 seconds (-10.2%)
with $initial_file_count == 500000: 353 seconds (-14.2%)
For $initial_file_count == 200000 there are 62600 nodes and leaves in the
btree of the first snapshot, while for $initial_file_count == 500000 there
are 152476 nodes and leaves. The roots were at level 2.
Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Nikolay Borisov [Mon, 22 Feb 2021 16:40:47 +0000 (18:40 +0200)]
btrfs: simplify code flow in btrfs_delayed_inode_reserve_metadata
btrfs_block_rsv_add can return only ENOSPC since it's called with
NO_FLUSH modifier. This so simplify the logic in
btrfs_delayed_inode_reserve_metadata to exploit this invariant.
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com>
[ add assert and comment ] Signed-off-by: David Sterba <dsterba@suse.com>
Nikolay Borisov [Mon, 22 Feb 2021 16:40:45 +0000 (18:40 +0200)]
btrfs: simplify commit logic in try_flush_qgroup
It's no longer expected to call this function with an open transaction
so all the workarounds concerning this can be removed. In fact it'll
constitute a bug to call this function with a transaction already held
so WARN in this case.
Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Anand Jain [Thu, 11 Feb 2021 05:25:17 +0000 (21:25 -0800)]
btrfs: scrub: drop a few function declarations
Drop function declarations at the beginning of the file scrub.c. These
functions are defined before they are used in the same file and don't
need forward declaration.
No functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Nikolay Borisov [Wed, 17 Feb 2021 13:12:50 +0000 (15:12 +0200)]
btrfs: replace open coded while loop with proper construct
btrfs_inc_block_group_ro wants to ensure that the current transaction is
not running dirty block groups, if it is it waits and loops again.
That logic is currently implemented using a goto label. Actually using
a proper do {} while() construct doesn't hurt readability nor does it
introduce excessive nesting and makes the relevant code stand out by
being encompassed in the loop construct. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Qu Wenruo [Thu, 11 Feb 2021 08:14:05 +0000 (16:14 +0800)]
btrfs: fix comment for btrfs ordered extent flag bits
There is small error in comment about BTRFS_ORDERED_* flags, added in
commit 3c198fe06449 ("btrfs: rework the order of
btrfs_ordered_extent::flags") but the fixup did not get merged in time.
The 4 types are for ordered extent itself, not for direct io.
Only 3 types support direct io, REGULAR/NOCOW/PREALLOC.
Fix the comment to reflect that.
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Merge branch 'for-5.12-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fixes from Tejun Heo:
"Two workqueue fixes.
One is around debugobj and poses no risk. The other is to prevent the
stall watchdog from firing spuriously in certain conditions. Not as
trivial as debugobj change but is still fairly low risk"
* 'for-5.12-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue/watchdog: Make unbound workqueues aware of touch_softlockup_watchdog() 84;0;0c84;0;0c There are two workqueue-specific watchdog timestamps:
workqueue: Move the position of debug_work_activate() in __queue_work()
Zheyu Ma [Sat, 3 Apr 2021 06:58:36 +0000 (06:58 +0000)]
firewire: nosy: Fix a use-after-free bug in nosy_ioctl()
For each device, the nosy driver allocates a pcilynx structure.
A use-after-free might happen in the following scenario:
1. Open nosy device for the first time and call ioctl with command
NOSY_IOC_START, then a new client A will be malloced and added to
doubly linked list.
2. Open nosy device for the second time and call ioctl with command
NOSY_IOC_START, then a new client B will be malloced and added to
doubly linked list.
3. Call ioctl with command NOSY_IOC_START for client A, then client A
will be readded to the doubly linked list. Now the doubly linked
list is messed up.
4. Close the first nosy device and nosy_release will be called. In
nosy_release, client A will be unlinked and freed.
5. Close the second nosy device, and client A will be referenced,
resulting in UAF.
The root cause of this bug is that the element in the doubly linked list
is reentered into the list.
Fix this bug by adding a check before inserting a client. If a client
is already in the linked list, don't insert it.
The following KASAN report reveals it:
BUG: KASAN: use-after-free in nosy_release+0x1ea/0x210
Write of size 8 at addr ffff888102ad7360 by task poc
CPU: 3 PID: 337 Comm: poc Not tainted 5.12.0-rc5+ #6
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Call Trace:
nosy_release+0x1ea/0x210
__fput+0x1e2/0x840
task_work_run+0xe8/0x180
exit_to_user_mode_prepare+0x114/0x120
syscall_exit_to_user_mode+0x1d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
The buggy address belongs to the object at ffff888102ad7300 which belongs to the cache kmalloc-128 of size 128
The buggy address is located 96 bytes inside of 128-byte region [ffff888102ad7300, ffff888102ad7380)
[ Modified to use 'list_empty()' inside proper lock - Linus ]
Wang Qing [Wed, 24 Mar 2021 11:40:29 +0000 (19:40 +0800)]
workqueue/watchdog: Make unbound workqueues aware of touch_softlockup_watchdog()
84;0;0c84;0;0c
There are two workqueue-specific watchdog timestamps:
+ @wq_watchdog_touched_cpu (per-CPU) updated by
touch_softlockup_watchdog()
+ @wq_watchdog_touched (global) updated by
touch_all_softlockup_watchdogs()
watchdog_timer_fn() checks only the global @wq_watchdog_touched for
unbound workqueues. As a result, unbound workqueues are not aware
of touch_softlockup_watchdog(). The watchdog might report a stall
even when the unbound workqueues are blocked by a known slow code.
Solution:
touch_softlockup_watchdog() must touch also the global @wq_watchdog_touched
timestamp.
The global timestamp can no longer be used for bound workqueues because
it is now updated from all CPUs. Instead, bound workqueues have to check
only @wq_watchdog_touched_cpu and these timestamps have to be updated for
all CPUs in touch_all_softlockup_watchdogs().
Beware:
The change might cause the opposite problem. An unbound workqueue
might get blocked on CPU A because of a real softlockup. The workqueue
watchdog would miss it when the timestamp got touched on CPU B.
It is acceptable because softlockups are detected by softlockup
watchdog. The workqueue watchdog is there to detect stalls where
a work never finishes, for example, because of dependencies of works
queued into the same workqueue.
V3:
- Modify the commit message clearly according to Petr's suggestion.
Signed-off-by: Wang Qing <wangqing@vivo.com> Signed-off-by: Tejun Heo <tj@kernel.org>
Merge tag 'io_uring-5.12-2021-04-03' of git://git.kernel.dk/linux-block
POull io_uring fix from Jens Axboe:
"Just fixing a silly braino in a previous patch, where we'd end up
failing to compile if CONFIG_BLOCK isn't enabled.
Not that a lot of people do that, but kernel bot spotted it and it's
probably prudent to just flush this out now before -rc6.
Sorry about that, none of my test compile configs have !CONFIG_BLOCK"
* tag 'io_uring-5.12-2021-04-03' of git://git.kernel.dk/linux-block:
io_uring: fix !CONFIG_BLOCK compilation failure
Merge tag 'gfs2-v5.12-rc2-fixes2' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2
Pull gfs2 fixes from Andreas Gruenbacher:
"Two more gfs2 fixes"
* tag 'gfs2-v5.12-rc2-fixes2' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2:
gfs2: report "already frozen/thawed" errors
gfs2: Flag a withdraw if init_threads() fails
Merge tag 'riscv-for-linus-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V fixes from Palmer Dabbelt:
"A handful of fixes for 5.12:
- fix a stack tracing regression related to "const register asm"
variables, which have unexpected behavior.
- ensure the value to be written by put_user() is evaluated before
enabling access to userspace memory..
- align the exception vector table correctly, so we don't rely on the
firmware's handling of unaligned accesses.
- build fix to make NUMA depend on MMU, which triggered on some
randconfigs"
* tag 'riscv-for-linus-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux:
riscv: Make NUMA depend on MMU
riscv: remove unneeded semicolon
riscv,entry: fix misaligned base for excp_vect_table
riscv: evaluate put_user() arg before enabling user access
riscv: Drop const annotation for sp
Merge tag 'powerpc-5.12-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Fix a bug on pseries where spurious wakeups from H_PROD would prevent
partition migration from succeeding.
Fix oopses seen in pcpu_alloc(), caused by parallel faults of the
percpu mapping causing us to corrupt the protection key used for the
mapping, and cause a fatal key fault.
Thanks to Aneesh Kumar K.V, Murilo Opsfelder Araujo, and Nathan Lynch"
* tag 'powerpc-5.12-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/mm/book3s64: Use the correct storage key value when calling H_PROTECT
powerpc/pseries/mobility: handle premature return from H_JOIN
powerpc/pseries/mobility: use struct for shared state
Merge tag 'driver-core-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core fix from Greg KH:
"Here is a single driver core fix for a reported problem with differed
probing. It has been in linux-next for a while with no reported
problems"
* tag 'driver-core-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
driver core: clear deferred probe reason on probe retry
Merge tag 'char-misc-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver fixes from Greg KH:
"Here are a few small driver char/misc changes for 5.12-rc6.
Nothing major here, a few fixes for reported issues:
- interconnect fixes for problems found
- fbcon syzbot-found fix
- extcon fixes
- firmware stratix10 bugfix
- MAINTAINERS file update.
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc:
drivers: video: fbcon: fix NULL dereference in fbcon_cursor()
mei: allow map and unmap of client dma buffer only for disconnected client
MAINTAINERS: Add linux-phy list and patchwork
interconnect: Fix kerneldoc warning
firmware: stratix10-svc: reset COMMAND_RECONFIG_FLAG_PARTIAL to 0
extcon: Fix error handling in extcon_dev_register
extcon: Add stubs for extcon_register_notifier_all() functions
interconnect: core: fix error return code of icc_link_destroy()
interconnect: qcom: msm8939: remove rpm-ids from non-RPM nodes
Merge tag 'staging-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging
Pull staging driver fixes from Greg KH:
"Here are two rtl8192e staging driver fixes for reported problems.
Both of these have been in linux-next for a while with no reported
issues"
* tag 'staging-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging:
staging: rtl8192e: Change state information from u16 to u8
staging: rtl8192e: Fix incorrect source in memcpy()
Merge tag 'tty-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull serial driver fix from Greg KH:
"Here is a single serial driver fix for 5.12-rc6. Is is a revert of a
change that showed up in 5.9 that has been reported to cause problems.
It has been in linux-next for a while with no reported issues"
* tag 'tty-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty:
soc: qcom-geni-se: Cleanup the code to remove proxy votes
kernel test robot correctly pinpoints a compilation failure if
CONFIG_BLOCK isn't set:
fs/io_uring.c: In function '__io_complete_rw':
>> fs/io_uring.c:2509:48: error: implicit declaration of function 'io_rw_should_reissue'; did you mean 'io_rw_reissue'? [-Werror=implicit-function-declaration]
2509 | if ((res == -EAGAIN || res == -EOPNOTSUPP) && io_rw_should_reissue(req)) {
| ^~~~~~~~~~~~~~~~~~~~
| io_rw_reissue
cc1: some warnings being treated as errors
Ensure that we have a stub declaration of io_rw_should_reissue() for
!CONFIG_BLOCK.
Fixes: 230d50d448ac ("io_uring: move reissue into regular IO path") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Merge tag 'block-5.12-2021-04-02' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
- Remove comment that never came to fruition in 22 years of development
(Christoph)
- Remove unused request flag (Christoph)
- Fix for null_blk fake timeout handling (Damien)
- Fix for IOCB_NOWAIT being ignored for O_DIRECT on raw bdevs (Pavel)
- Error propagation fix for multiple split bios (Yufen)
* tag 'block-5.12-2021-04-02' of git://git.kernel.dk/linux-block:
block: remove the unused RQF_ALLOCED flag
block: update a few comments in uapi/linux/blkpg.h
block: don't ignore REQ_NOWAIT for direct IO
null_blk: fix command timeout completion handling
block: only update parent bi_status when bio fail
Merge tag 'io_uring-5.12-2021-04-02' of git://git.kernel.dk/linux-block
Pull io_uring fixes from Jens Axboe:
"Nothing really major in here, and finally nothing really related to
signals. A few minor fixups related to the threading changes, and some
general fixes, that's it.
There's the pending gdb-get-confused-about-arch, but that's more of a
cosmetic issue, nothing that hinder use of it. And given that other
archs will likely be affected by that oddity too, better to postpone
any changes there until 5.13 imho"
* tag 'io_uring-5.12-2021-04-02' of git://git.kernel.dk/linux-block:
io_uring: move reissue into regular IO path
io_uring: fix EIOCBQUEUED iter revert
io_uring/io-wq: protect against sprintf overflow
io_uring: don't mark S_ISBLK async work as unbounded
io_uring: drop sqd lock before handling signals for SQPOLL
io_uring: handle setup-failed ctx in kill_timeouts
io_uring: always go for cancellation spin on exec
Merge tag 'acpi-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI fixes from Rafael Wysocki:
"These fix an ACPI tables management issue, an issue related to the
ACPI enumeration of devices and CPU wakeup in the ACPI processor
driver.
Specifics:
- Ensure that the memory occupied by ACPI tables on x86 will always
be reserved to prevent it from being allocated for other purposes
which was possible in some cases (Rafael Wysocki).
- Fix the ACPI device enumeration code to prevent it from attempting
to evaluate the _STA control method for devices with unmet
dependencies which is likely to fail (Hans de Goede).
- Fix the handling of CPU0 wakeup in the ACPI processor driver to
prevent CPU0 online failures from occurring (Vitaly Kuznetsov)"
* tag 'acpi-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()
ACPI: scan: Fix _STA getting called on devices with unmet dependencies
ACPI: tables: x86: Reserve memory occupied by ACPI tables
Merge tag 'pm-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management fixes from Rafael Wysocki:
"These fix a race condition and an ordering issue related to using
device links in the runtime PM framework and two kerneldoc comments in
cpufreq.
Specifics:
- Fix race condition related to the handling of supplier devices
during consumer device probe and fix the order of decrementation of
two related reference counters in the runtime PM core code handling
supplier devices (Adrian Hunter).
- Fix kerneldoc comments in cpufreq that have not been updated along
with the functions documented by them (Geert Uytterhoeven)"
* tag 'pm-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM: runtime: Fix race getting/putting suppliers at probe
PM: runtime: Fix ordering in pm_runtime_get_suppliers()
cpufreq: Fix scaling_{available,boost}_frequencies_show() comments
Christoph Hellwig [Fri, 2 Apr 2021 17:17:31 +0000 (19:17 +0200)]
block: update a few comments in uapi/linux/blkpg.h
The big top of the file comment talk about grand plans that never
happened, so remove them to not confuse the readers. Also mark the
devname and volname fields as ignored as they were never used by the
kernel.
Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Merge tag 'trace-v5.12-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fix from Steven Rostedt:
"Fix stack trace entry size to stop showing garbage
The macro that creates both the structure and the format displayed to
user space for the stack trace event was changed a while ago to fix
the parsing by user space tooling. But this change also modified the
structure used to store the stack trace event. It changed the caller
array field from [0] to [8].
Even though the size in the ring buffer is dynamic and can be
something other than 8 (user space knows how to handle this), the 8
extra words was not accounted for when reserving the event on the ring
buffer, and added 8 more entries, due to the calculation of
"sizeof(*entry) + nr_entries * sizeof(long)", as the sizeof(*entry)
now contains 8 entries.
The size of the caller field needs to be subtracted from the size of
the entry to create the correct allocation size"
* tag 'trace-v5.12-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Fix stack trace event size
It's non-obvious how retry is done for block backed files, when it happens
off the kiocb done path. It also makes it tricky to deal with the iov_iter
handling.
Just mark the req as needing a reissue, and handling it from the
submission path instead. This makes it directly obvious that we're not
re-importing the iovec from userspace past the submit point, and it means
that we can just reuse our usual -EAGAIN retry path from the read/write
handling.
At some point in the future, we'll gain the ability to always reliably
return -EAGAIN through the stack. A previous attempt on the block side
didn't pan out and got reverted, hence the need to check for this
information out-of-band right now.
Pavel Begunkov [Fri, 20 Nov 2020 17:10:28 +0000 (17:10 +0000)]
block: don't ignore REQ_NOWAIT for direct IO
If IOCB_NOWAIT is set on submission, then that needs to get propagated to
REQ_NOWAIT on the block side. Otherwise we completely lose this
information, and any issuer of IOCB_NOWAIT IO will potentially end up
blocking on eg request allocation on the storage side.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Zihao Yu [Wed, 17 Mar 2021 08:17:25 +0000 (16:17 +0800)]
riscv,entry: fix misaligned base for excp_vect_table
In RV64, the size of each entry in excp_vect_table is 8 bytes. If the
base of the table is not 8-byte aligned, loading an entry in the table
will raise a misaligned exception. Although such exception will be
handled by opensbi/bbl, this still causes performance degradation.
Ben Dooks [Mon, 29 Mar 2021 09:57:49 +0000 (10:57 +0100)]
riscv: evaluate put_user() arg before enabling user access
The <asm/uaccess.h> header has a problem with put_user(a, ptr) if
the 'a' is not a simple variable, such as a function. This can lead
to the compiler producing code as so:
1: enable_user_access()
2: evaluate 'a' into register 'r'
3: put 'r' to 'ptr'
4: disable_user_acess()
The issue is that 'a' is now being evaluated with the user memory
protections disabled. So we try and force the evaulation by assigning
'x' to __val at the start, and hoping the compiler barriers in
enable_user_access() do the job of ordering step 2 before step 1.
This has shown up in a bug where 'a' sleeps and thus schedules out
and loses the SR_SUM flag. This isn't sufficient to fully fix, but
should reduce the window of opportunity. The first instance of this
we found is in scheudle_tail() where the code does:
$ less -N kernel/sched/core.c
4263 if (current->set_child_tid)
4264 put_user(task_pid_vnr(current), current->set_child_tid);
Here, the task_pid_vnr(current) is called within the block that has
enabled the user memory access. This can be made worse with KASAN
which makes task_pid_vnr() a rather large call with plenty of
opportunity to sleep.
Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk> Reported-by: syzbot+e74b94fe601ab9552d69@syzkaller.appspotmail.com Suggested-by: Arnd Bergman <arnd@arndb.de>
--
Changes since v1:
- fixed formatting and updated the patch description with more info
Changes since v2:
- fixed commenting on __put_user() (schwab@linux-m68k.org)
Change since v3:
- fixed RFC in patch title. Should be ready to merge.
Merge tag 'lto-v5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull LTO fix from Kees Cook:
"It seems that there is a bug in ld.bfd when doing module section
merging.
As explicit merging is only needed for LTO, the work-around is to only
do it under LTO, leaving the original section layout choices alone
under normal builds:
- Only perform explicit module section merges under LTO (Sean
Christopherson)"
* tag 'lto-v5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
kbuild: lto: Merge module sections if and only if CONFIG_LTO_CLANG is enabled
Sean Christopherson [Mon, 22 Mar 2021 23:44:38 +0000 (16:44 -0700)]
kbuild: lto: Merge module sections if and only if CONFIG_LTO_CLANG is enabled
Merge module sections only when using Clang LTO. With ld.bfd, merging
sections does not appear to update the symbol tables for the module,
e.g. 'readelf -s' shows the value that a symbol would have had, if
sections were not merged. ld.lld does not show this problem.
The stale symbol table breaks gdb's function disassembler, and presumably
other things, e.g.
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"It's a bit larger than I (and probably you) would like by the time we
get to -rc6, but perhaps not entirely unexpected since the changes in
the last merge window were larger than usual.
x86:
- Fixes for missing TLB flushes with TDP MMU
- Fixes for race conditions in nested SVM
- Fixes for lockdep splat with Xen emulation
- Fix for kvmclock underflow
- Fix srcdir != builddir builds
- Other small cleanups
ARM:
- Fix GICv3 MMIO compatibility probing
- Prevent guests from using the ARMv8.4 self-hosted tracing
extension"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
selftests: kvm: Check that TSC page value is small after KVM_SET_CLOCK(0)
KVM: x86: Prevent 'hv_clock->system_time' from going negative in kvm_guest_time_update()
KVM: x86: disable interrupts while pvclock_gtod_sync_lock is taken
KVM: x86: reduce pvclock_gtod_sync_lock critical sections
KVM: SVM: ensure that EFER.SVME is set when running nested guest or on nested vmexit
KVM: SVM: load control fields from VMCB12 before checking them
KVM: x86/mmu: Don't allow TDP MMU to yield when recovering NX pages
KVM: x86/mmu: Ensure TLBs are flushed for TDP MMU during NX zapping
KVM: x86/mmu: Ensure TLBs are flushed when yielding during GFN range zap
KVM: make: Fix out-of-source module builds
selftests: kvm: make hardware_disable_test less verbose
KVM: x86/vPMU: Forbid writing to MSR_F15H_PERF MSRs when guest doesn't have X86_FEATURE_PERFCTR_CORE
KVM: x86: remove unused declaration of kvm_write_tsc()
KVM: clean up the unused argument
tools/kvm_stat: Add restart delay
KVM: arm64: Fix CPU interface MMIO compatibility detection
KVM: arm64: Disable guest access to trace filter controls
KVM: arm64: Hide system instruction access to Trace registers
Merge tag 'drm-fixes-2021-04-02' of git://anongit.freedesktop.org/drm/drm
Pull drm fixes from Dave Airlie:
"Things have settled down in time for Easter, a random smattering of
small fixes across a few drivers.
I'm guessing though there might be some i915 and misc fixes out there
I haven't gotten yet, but since today is a public holiday here, I'm
sending this early so I can have the day off, I'll see if more
requests come in and decide what to do with them later.
amdgpu:
- Polaris idle power fix
- VM fix
- Vangogh S3 fix
- Fixes for non-4K page sizes
* tag 'drm-fixes-2021-04-02' of git://anongit.freedesktop.org/drm/drm:
drm/amdgpu: check alignment on CPU page for bo map
drm/amdgpu: Set a suitable dev_info.gart_page_size
drm/amdgpu/vangogh: don't check for dpm in is_dpm_running when in suspend
drm/amdkfd: dqm fence memory corruption
drm/tegra: sor: Grab runtime PM reference across reset
drm/tegra: dc: Restore coupling of display controllers
gpu: host1x: Use different lock classes for each client
drm/tegra: dc: Don't set PLL clock to 0Hz
drm/amdgpu: fix offset calculation in amdgpu_vm_bo_clear_mappings()
drm/amd/pm: no need to force MCLK to highest when no display connected
drm/exynos/decon5433: Remove the unused include statements
drm/imx: imx-ldb: fix out of bounds array access warning
drm/imx: imx-ldb: Register LDB channel1 when it is the only channel to be used
drm/imx: fix memory leak when fails to init
Dave Airlie [Thu, 1 Apr 2021 18:52:45 +0000 (04:52 +1000)]
Merge tag 'imx-drm-fixes-2021-04-01' of git://git.pengutronix.de/git/pza/linux into drm-fixes
drm/imx: imx-drm-core and imx-ldb fixes
Fix a memory leak in an error path during DRM device initialization,
fix the LDB driver to register channel 1 even if channel 0 is unused,
and fix an out of bounds array access warning in the LDB driver.
Dave Airlie [Thu, 1 Apr 2021 18:44:28 +0000 (04:44 +1000)]
Merge tag 'drm/tegra/for-5.12-rc6' of ssh://git.freedesktop.org/git/tegra/linux into drm-fixes
drm/tegra: Fixes for v5.12-rc6
This contains a couple of fixes for various issues such as lockdep
warnings, runtime PM references, coupled display controllers and
misconfigured PLLs.
Commit cbc3b92ce037 fixed an issue to modify the macros of the stack trace
event so that user space could parse it properly. Originally the stack
trace format to user space showed that the called stack was a dynamic
array. But it is not actually a dynamic array, in the way that other
dynamic event arrays worked, and this broke user space parsing for it. The
update was to make the array look to have 8 entries in it. Helper
functions were added to make it parse it correctly, as the stack was
dynamic, but was determined by the size of the event stored.
Although this fixed user space on how it read the event, it changed the
internal structure used for the stack trace event. It changed the array
size from [0] to [8] (added 8 entries). This increased the size of the
stack trace event by 8 words. The size reserved on the ring buffer was the
size of the stack trace event plus the number of stack entries found in
the stack trace. That commit caused the amount to be 8 more than what was
needed because it did not expect the caller field to have any size. This
produced 8 entries of garbage (and reading random data) from the stack
trace event:
Instead, subtract the size of the caller field from the size of the event
to make sure that only the amount needed to store the stack trace is
reserved.
Merge tag 'tomoyo-pr-20210401' of git://git.osdn.net/gitroot/tomoyo/tomoyo-test1
Pull tomory fix from Tetsuo Handa:
"An update on 'tomoyo: recognize kernel threads correctly' from Jens
Axboe to not special case PF_IO_WORKER for PF_KTHREAD"
* tag 'tomoyo-pr-20210401' of git://git.osdn.net/gitroot/tomoyo/tomoyo-test1:
tomoyo: don't special case PF_IO_WORKER for PF_KTHREAD