static int ca_send_message(struct dst_state *state, struct ca_msg *p_ca_message, void __user *arg)
 {
        int i = 0;
-       unsigned int ca_message_header_len;
 
        u32 command = 0;
        struct ca_msg *hw_buffer;
 
 
        if (p_ca_message->msg) {
-               ca_message_header_len = p_ca_message->length;   /*      Restore it back when you are done       */
                /*      EN50221 tag     */
                command = 0;
 
 
 
 static void af9013_statistics_work(struct work_struct *work)
 {
-       int ret;
        struct af9013_state *state = container_of(work,
                struct af9013_state, statistics_work.work);
        unsigned int next_msec;
        default:
                state->statistics_step = 0;
        case 0:
-               ret = af9013_statistics_signal_strength(&state->fe);
+               af9013_statistics_signal_strength(&state->fe);
                state->statistics_step++;
                next_msec = 300;
                break;
        case 1:
-               ret = af9013_statistics_snr_start(&state->fe);
+               af9013_statistics_snr_start(&state->fe);
                state->statistics_step++;
                next_msec = 200;
                break;
        case 2:
-               ret = af9013_statistics_ber_unc_start(&state->fe);
+               af9013_statistics_ber_unc_start(&state->fe);
                state->statistics_step++;
                next_msec = 1000;
                break;
        case 3:
-               ret = af9013_statistics_snr_result(&state->fe);
+               af9013_statistics_snr_result(&state->fe);
                state->statistics_step++;
                next_msec = 400;
                break;
        case 4:
-               ret = af9013_statistics_ber_unc_result(&state->fe);
+               af9013_statistics_ber_unc_result(&state->fe);
                state->statistics_step++;
                next_msec = 100;
                break;
 
        schedule_delayed_work(&state->statistics_work,
                msecs_to_jiffies(next_msec));
-
-       return;
 }
 
 static int af9013_get_tune_settings(struct dvb_frontend *fe,
 
 static int cx24110_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
 {
        struct cx24110_state *state = fe->demodulator_priv;
-       u32 lastbyer;
 
        if(cx24110_readreg(state,0x10)&0x40) {
                /* the RS error counter has finished one counting window */
                cx24110_writereg(state,0x10,0x60); /* select the byer reg */
-               lastbyer=cx24110_readreg(state,0x12)|
-                       (cx24110_readreg(state,0x13)<<8)|
-                       (cx24110_readreg(state,0x14)<<16);
+               cx24110_readreg(state, 0x12) |
+                       (cx24110_readreg(state, 0x13) << 8) |
+                       (cx24110_readreg(state, 0x14) << 16);
                cx24110_writereg(state,0x10,0x70); /* select the bler reg */
                state->lastbler=cx24110_readreg(state,0x12)|
                        (cx24110_readreg(state,0x13)<<8)|
 
 static int dib9000_mbx_process(struct dib9000_state *state, u16 attr)
 {
        int ret = 0;
-       u16 tmp;
 
        if (!state->platform.risc.fw_is_running)
                return -1;
        if (dib9000_mbx_count(state, 1, attr))  /* 1=RiscB */
                ret = dib9000_mbx_fetch_to_cache(state, attr);
 
-       tmp = dib9000_read_word_attr(state, 1229, attr);        /* Clear the IRQ */
+       dib9000_read_word_attr(state, 1229, attr);      /* Clear the IRQ */
 /*      if (tmp) */
 /*              dprintk( "cleared IRQ: %x", tmp); */
        DibReleaseLock(&state->platform.risc.mbx_lock);
 
 static int it913x_fe_read_ber(struct dvb_frontend *fe, u32 *ber)
 {
        struct it913x_fe_state *state = fe->demodulator_priv;
-       int ret;
        u8 reg[5];
        /* Read Aborted Packets and Pre-Viterbi error rate 5 bytes */
-       ret = it913x_read_reg(state, RSD_ABORT_PKT_LSB, reg, sizeof(reg));
+       it913x_read_reg(state, RSD_ABORT_PKT_LSB, reg, sizeof(reg));
        state->ucblocks += (u32)(reg[1] << 8) | reg[0];
        *ber = (u32)(reg[4] << 16) | (reg[3] << 8) | reg[2];
        return 0;
 {
        struct dtv_frontend_properties *p = &fe->dtv_property_cache;
        struct it913x_fe_state *state = fe->demodulator_priv;
-       int ret;
        u8 reg[8];
 
-       ret = it913x_read_reg(state, REG_TPSD_TX_MODE, reg, sizeof(reg));
+       it913x_read_reg(state, REG_TPSD_TX_MODE, reg, sizeof(reg));
 
        if (reg[3] < 3)
                p->modulation = fe_con[reg[3]];
 {
        struct dtv_frontend_properties *p = &fe->dtv_property_cache;
        struct it913x_fe_state *state = fe->demodulator_priv;
-       int ret, i;
+       int i;
        u8 empty_ch, last_ch;
 
        state->it913x_status = 0;
 
        /* Set bw*/
-       ret = it913x_fe_select_bw(state, p->bandwidth_hz,
+       it913x_fe_select_bw(state, p->bandwidth_hz,
                state->adcFrequency);
 
        /* Training Mode Off */
-       ret = it913x_write_reg(state, PRO_LINK, TRAINING_MODE, 0x0);
+       it913x_write_reg(state, PRO_LINK, TRAINING_MODE, 0x0);
 
        /* Clear Empty Channel */
-       ret = it913x_write_reg(state, PRO_DMOD, EMPTY_CHANNEL_STATUS, 0x0);
+       it913x_write_reg(state, PRO_DMOD, EMPTY_CHANNEL_STATUS, 0x0);
 
        /* Clear bits */
-       ret = it913x_write_reg(state, PRO_DMOD, MP2IF_SYNC_LK, 0x0);
+       it913x_write_reg(state, PRO_DMOD, MP2IF_SYNC_LK, 0x0);
        /* LED on */
-       ret = it913x_write_reg(state, PRO_LINK, GPIOH3_O, 0x1);
+       it913x_write_reg(state, PRO_LINK, GPIOH3_O, 0x1);
        /* Select Band*/
        if ((p->frequency >= 51000000) && (p->frequency <= 230000000))
                i = 0;
        else
                return -EOPNOTSUPP;
 
-       ret = it913x_write_reg(state, PRO_DMOD, FREE_BAND, i);
+       it913x_write_reg(state, PRO_DMOD, FREE_BAND, i);
 
        deb_info("Frontend Set Tuner Type %02x", state->tuner_type);
        switch (state->tuner_type) {
        case IT9135_60:
        case IT9135_61:
        case IT9135_62:
-               ret = it9137_set_tuner(state,
+               it9137_set_tuner(state,
                        p->bandwidth_hz, p->frequency);
                break;
        default:
                break;
        }
        /* LED off */
-       ret = it913x_write_reg(state, PRO_LINK, GPIOH3_O, 0x0);
+       it913x_write_reg(state, PRO_LINK, GPIOH3_O, 0x0);
        /* Trigger ofsm */
-       ret = it913x_write_reg(state, PRO_DMOD, TRIGGER_OFSM, 0x0);
+       it913x_write_reg(state, PRO_DMOD, TRIGGER_OFSM, 0x0);
        last_ch = 2;
        for (i = 0; i < 40; ++i) {
                empty_ch = it913x_read_reg_u8(state, EMPTY_CHANNEL_STATUS);
 
 
 static int lgs8gxx_set_mode_manual(struct lgs8gxx_state *priv)
 {
-       int ret = 0;
        u8 t;
 
        if (priv->config->prod == LGS8GXX_PROD_LGS8G75) {
        if (priv->config->prod == LGS8GXX_PROD_LGS8913)
                lgs8gxx_write_reg(priv, 0xC1, 0);
 
-       ret = lgs8gxx_read_reg(priv, 0xC5, &t);
+       lgs8gxx_read_reg(priv, 0xC5, &t);
        t = (t & 0xE0) | 0x06;
        lgs8gxx_write_reg(priv, 0xC5, t);
 
 
 static int m88rs2000_set_fec(struct m88rs2000_state *state,
                fe_code_rate_t fec)
 {
-       int ret;
        u16 fec_set;
        switch (fec) {
        /* This is not confirmed kept for reference */
        default:
                fec_set = 0x08;
        }
-       ret = m88rs2000_demod_write(state, 0x76, fec_set);
+       m88rs2000_demod_write(state, 0x76, fec_set);
 
        return 0;
 }
 
 static int stb6100_read_reg(struct stb6100_state *state, u8 reg)
 {
        u8 regs[STB6100_NUMREGS];
-       int rc;
 
        struct i2c_msg msg = {
                .addr   = state->config->tuner_address + reg,
                .len    = 1
        };
 
-       rc = i2c_transfer(state->i2c, &msg, 1);
+       i2c_transfer(state->i2c, &msg, 1);
 
        if (unlikely(reg >= STB6100_NUMREGS)) {
                dprintk(verbose, FE_ERROR, 1, "Invalid register offset 0x%x", reg);
 
        int delay;
        int sweeprate;
        int carrieroffset;
-       unsigned long starttime;
        unsigned long timeout;
        fe_spectral_inversion_t inversion;
 
        stv0297_writereg_mask(state, 0x43, 0x10, 0x10);
 
        /* wait for WGAGC lock */
-       starttime = jiffies;
        timeout = jiffies + msecs_to_jiffies(2000);
        while (time_before(jiffies, timeout)) {
                msleep(10);
 
 {
        struct dvb_frontend *fe = &state->frontend;
 
-       enum stv090x_rolloff rolloff;
        enum stv090x_modcod modcod;
 
        s32 srate, pilots, aclc, f_1, f_0, i = 0, blind_tune = 0;
        f_1 = STV090x_READ_DEMOD(state, CFR2);
        f_0 = STV090x_READ_DEMOD(state, CFR1);
        reg = STV090x_READ_DEMOD(state, TMGOBS);
-       rolloff = STV090x_GETFIELD_Px(reg, ROLLOFF_STATUS_FIELD);
 
        if (state->algo == STV090x_BLIND_SEARCH) {
                STV090x_WRITE_DEMOD(state, SFRSTEP, 0x00);
 
 {
        struct zl10353_state *state = fe->demodulator_priv;
        u8 zl10353_reset_attach[6] = { 0x50, 0x03, 0x64, 0x46, 0x15, 0x0F };
-       int rc = 0;
 
        if (debug_regs)
                zl10353_dump_regs(fe);
        /* Do a "hard" reset if not already done */
        if (zl10353_read_register(state, 0x50) != zl10353_reset_attach[1] ||
            zl10353_read_register(state, 0x51) != zl10353_reset_attach[2]) {
-               rc = zl10353_write(fe, zl10353_reset_attach,
+               zl10353_write(fe, zl10353_reset_attach,
                                   sizeof(zl10353_reset_attach));
                if (debug_regs)
                        zl10353_dump_regs(fe);
 
 
 static void smssdio_interrupt(struct sdio_func *func)
 {
-       int ret, isr;
+       int ret;
 
        struct smssdio_device *smsdev;
        struct smscore_buffer_t *cb;
         * The interrupt register has no defined meaning. It is just
         * a way of turning of the level triggered interrupt.
         */
-       isr = sdio_readb(func, SMSSDIO_INT, &ret);
+       (void)sdio_readb(func, SMSSDIO_INT, &ret);
        if (ret) {
                sms_err("Unable to read interrupt register!\n");
                return;