--- /dev/null
 -      vm_vcpu_add(vm, vcpuid, 0, 0);
+ // SPDX-License-Identifier: GPL-2.0-only
+ /*
+  * KVM selftest s390x library code - CPU-related functions (page tables...)
+  *
+  * Copyright (C) 2019, Red Hat, Inc.
+  */
+ 
+ #define _GNU_SOURCE /* for program_invocation_name */
+ 
+ #include "processor.h"
+ #include "kvm_util.h"
+ #include "../kvm_util_internal.h"
+ 
+ #define KVM_GUEST_PAGE_TABLE_MIN_PADDR                0x180000
+ 
+ #define PAGES_PER_REGION 4
+ 
+ void virt_pgd_alloc(struct kvm_vm *vm, uint32_t memslot)
+ {
+       vm_paddr_t paddr;
+ 
+       TEST_ASSERT(vm->page_size == 4096, "Unsupported page size: 0x%x",
+                   vm->page_size);
+ 
+       if (vm->pgd_created)
+               return;
+ 
+       paddr = vm_phy_pages_alloc(vm, PAGES_PER_REGION,
+                                  KVM_GUEST_PAGE_TABLE_MIN_PADDR, memslot);
+       memset(addr_gpa2hva(vm, paddr), 0xff, PAGES_PER_REGION * vm->page_size);
+ 
+       vm->pgd = paddr;
+       vm->pgd_created = true;
+ }
+ 
+ /*
+  * Allocate 4 pages for a region/segment table (ri < 4), or one page for
+  * a page table (ri == 4). Returns a suitable region/segment table entry
+  * which points to the freshly allocated pages.
+  */
+ static uint64_t virt_alloc_region(struct kvm_vm *vm, int ri, uint32_t memslot)
+ {
+       uint64_t taddr;
+ 
+       taddr = vm_phy_pages_alloc(vm,  ri < 4 ? PAGES_PER_REGION : 1,
+                                  KVM_GUEST_PAGE_TABLE_MIN_PADDR, memslot);
+       memset(addr_gpa2hva(vm, taddr), 0xff, PAGES_PER_REGION * vm->page_size);
+ 
+       return (taddr & REGION_ENTRY_ORIGIN)
+               | (((4 - ri) << 2) & REGION_ENTRY_TYPE)
+               | ((ri < 4 ? (PAGES_PER_REGION - 1) : 0) & REGION_ENTRY_LENGTH);
+ }
+ 
+ /*
+  * VM Virtual Page Map
+  *
+  * Input Args:
+  *   vm - Virtual Machine
+  *   gva - VM Virtual Address
+  *   gpa - VM Physical Address
+  *   memslot - Memory region slot for new virtual translation tables
+  *
+  * Output Args: None
+  *
+  * Return: None
+  *
+  * Within the VM given by vm, creates a virtual translation for the page
+  * starting at vaddr to the page starting at paddr.
+  */
+ void virt_pg_map(struct kvm_vm *vm, uint64_t gva, uint64_t gpa,
+                uint32_t memslot)
+ {
+       int ri, idx;
+       uint64_t *entry;
+ 
+       TEST_ASSERT((gva % vm->page_size) == 0,
+               "Virtual address not on page boundary,\n"
+               "  vaddr: 0x%lx vm->page_size: 0x%x",
+               gva, vm->page_size);
+       TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
+               (gva >> vm->page_shift)),
+               "Invalid virtual address, vaddr: 0x%lx",
+               gva);
+       TEST_ASSERT((gpa % vm->page_size) == 0,
+               "Physical address not on page boundary,\n"
+               "  paddr: 0x%lx vm->page_size: 0x%x",
+               gva, vm->page_size);
+       TEST_ASSERT((gpa >> vm->page_shift) <= vm->max_gfn,
+               "Physical address beyond beyond maximum supported,\n"
+               "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
+               gva, vm->max_gfn, vm->page_size);
+ 
+       /* Walk through region and segment tables */
+       entry = addr_gpa2hva(vm, vm->pgd);
+       for (ri = 1; ri <= 4; ri++) {
+               idx = (gva >> (64 - 11 * ri)) & 0x7ffu;
+               if (entry[idx] & REGION_ENTRY_INVALID)
+                       entry[idx] = virt_alloc_region(vm, ri, memslot);
+               entry = addr_gpa2hva(vm, entry[idx] & REGION_ENTRY_ORIGIN);
+       }
+ 
+       /* Fill in page table entry */
+       idx = (gva >> 12) & 0x0ffu;             /* page index */
+       if (!(entry[idx] & PAGE_INVALID))
+               fprintf(stderr,
+                       "WARNING: PTE for gpa=0x%"PRIx64" already set!\n", gpa);
+       entry[idx] = gpa;
+ }
+ 
+ /*
+  * Address Guest Virtual to Guest Physical
+  *
+  * Input Args:
+  *   vm - Virtual Machine
+  *   gpa - VM virtual address
+  *
+  * Output Args: None
+  *
+  * Return:
+  *   Equivalent VM physical address
+  *
+  * Translates the VM virtual address given by gva to a VM physical
+  * address and then locates the memory region containing the VM
+  * physical address, within the VM given by vm.  When found, the host
+  * virtual address providing the memory to the vm physical address is
+  * returned.
+  * A TEST_ASSERT failure occurs if no region containing translated
+  * VM virtual address exists.
+  */
+ vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
+ {
+       int ri, idx;
+       uint64_t *entry;
+ 
+       TEST_ASSERT(vm->page_size == 4096, "Unsupported page size: 0x%x",
+                   vm->page_size);
+ 
+       entry = addr_gpa2hva(vm, vm->pgd);
+       for (ri = 1; ri <= 4; ri++) {
+               idx = (gva >> (64 - 11 * ri)) & 0x7ffu;
+               TEST_ASSERT(!(entry[idx] & REGION_ENTRY_INVALID),
+                           "No region mapping for vm virtual address 0x%lx",
+                           gva);
+               entry = addr_gpa2hva(vm, entry[idx] & REGION_ENTRY_ORIGIN);
+       }
+ 
+       idx = (gva >> 12) & 0x0ffu;             /* page index */
+ 
+       TEST_ASSERT(!(entry[idx] & PAGE_INVALID),
+                   "No page mapping for vm virtual address 0x%lx", gva);
+ 
+       return (entry[idx] & ~0xffful) + (gva & 0xffful);
+ }
+ 
+ static void virt_dump_ptes(FILE *stream, struct kvm_vm *vm, uint8_t indent,
+                          uint64_t ptea_start)
+ {
+       uint64_t *pte, ptea;
+ 
+       for (ptea = ptea_start; ptea < ptea_start + 0x100 * 8; ptea += 8) {
+               pte = addr_gpa2hva(vm, ptea);
+               if (*pte & PAGE_INVALID)
+                       continue;
+               fprintf(stream, "%*spte @ 0x%lx: 0x%016lx\n",
+                       indent, "", ptea, *pte);
+       }
+ }
+ 
+ static void virt_dump_region(FILE *stream, struct kvm_vm *vm, uint8_t indent,
+                            uint64_t reg_tab_addr)
+ {
+       uint64_t addr, *entry;
+ 
+       for (addr = reg_tab_addr; addr < reg_tab_addr + 0x400 * 8; addr += 8) {
+               entry = addr_gpa2hva(vm, addr);
+               if (*entry & REGION_ENTRY_INVALID)
+                       continue;
+               fprintf(stream, "%*srt%lde @ 0x%lx: 0x%016lx\n",
+                       indent, "", 4 - ((*entry & REGION_ENTRY_TYPE) >> 2),
+                       addr, *entry);
+               if (*entry & REGION_ENTRY_TYPE) {
+                       virt_dump_region(stream, vm, indent + 2,
+                                        *entry & REGION_ENTRY_ORIGIN);
+               } else {
+                       virt_dump_ptes(stream, vm, indent + 2,
+                                      *entry & REGION_ENTRY_ORIGIN);
+               }
+       }
+ }
+ 
+ void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
+ {
+       if (!vm->pgd_created)
+               return;
+ 
+       virt_dump_region(stream, vm, indent, vm->pgd);
+ }
+ 
+ /*
+  * Create a VM with reasonable defaults
+  *
+  * Input Args:
+  *   vcpuid - The id of the single VCPU to add to the VM.
+  *   extra_mem_pages - The size of extra memories to add (this will
+  *                     decide how much extra space we will need to
+  *                     setup the page tables using mem slot 0)
+  *   guest_code - The vCPU's entry point
+  *
+  * Output Args: None
+  *
+  * Return:
+  *   Pointer to opaque structure that describes the created VM.
+  */
+ struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
+                                void *guest_code)
+ {
+       /*
+        * The additional amount of pages required for the page tables is:
+        * 1 * n / 256 + 4 * (n / 256) / 2048 + 4 * (n / 256) / 2048^2 + ...
+        * which is definitely smaller than (n / 256) * 2.
+        */
+       uint64_t extra_pg_pages = extra_mem_pages / 256 * 2;
+       struct kvm_vm *vm;
+ 
+       vm = vm_create(VM_MODE_DEFAULT,
+                      DEFAULT_GUEST_PHY_PAGES + extra_pg_pages, O_RDWR);
+ 
+       kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
+       vm_vcpu_add_default(vm, vcpuid, guest_code);
+ 
+       return vm;
+ }
+ 
+ /*
+  * Adds a vCPU with reasonable defaults (i.e. a stack and initial PSW)
+  *
+  * Input Args:
+  *   vcpuid - The id of the VCPU to add to the VM.
+  *   guest_code - The vCPU's entry point
+  */
+ void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
+ {
+       size_t stack_size =  DEFAULT_STACK_PGS * getpagesize();
+       uint64_t stack_vaddr;
+       struct kvm_regs regs;
+       struct kvm_sregs sregs;
+       struct kvm_run *run;
+ 
+       TEST_ASSERT(vm->page_size == 4096, "Unsupported page size: 0x%x",
+                   vm->page_size);
+ 
+       stack_vaddr = vm_vaddr_alloc(vm, stack_size,
+                                    DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0);
+ 
 -void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot)
 -{
 -      struct kvm_sregs sregs;
 -
 -      vcpu_sregs_get(vm, vcpuid, &sregs);
 -      sregs.crs[0] |= 0x00040000;             /* Enable floating point regs */
 -      vcpu_sregs_set(vm, vcpuid, &sregs);
 -}
 -
++      vm_vcpu_add(vm, vcpuid);
+ 
+       /* Setup guest registers */
+       vcpu_regs_get(vm, vcpuid, ®s);
+       regs.gprs[15] = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()) - 160;
+       vcpu_regs_set(vm, vcpuid, ®s);
+ 
+       vcpu_sregs_get(vm, vcpuid, &sregs);
++      sregs.crs[0] |= 0x00040000;             /* Enable floating point regs */
+       sregs.crs[1] = vm->pgd | 0xf;           /* Primary region table */
+       vcpu_sregs_set(vm, vcpuid, &sregs);
+ 
+       run = vcpu_state(vm, vcpuid);
+       run->psw_mask = 0x0400000180000000ULL;  /* DAT enabled + 64 bit mode */
+       run->psw_addr = (uintptr_t)guest_code;
+ }
+ 
+ void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
+ {
+       struct vcpu *vcpu = vm->vcpu_head;
+ 
+       fprintf(stream, "%*spstate: psw: 0x%.16llx:0x%.16llx\n",
+               indent, "", vcpu->state->psw_mask, vcpu->state->psw_addr);
+ }