#ifdef CONFIG_HARD_I2C
-/*
- * PPC405GP I2C interface definitions.
- */
-#define I2C_REGISTERS_BASE_ADDRESS 0xEF600500
-#define IIC_MDBUF (I2C_REGISTERS_BASE_ADDRESS+IICMDBUF)
-#define IIC_SDBUF (I2C_REGISTERS_BASE_ADDRESS+IICSDBUF)
-#define IIC_LMADR (I2C_REGISTERS_BASE_ADDRESS+IICLMADR)
-#define IIC_HMADR (I2C_REGISTERS_BASE_ADDRESS+IICHMADR)
-#define IIC_CNTL (I2C_REGISTERS_BASE_ADDRESS+IICCNTL)
-#define IIC_MDCNTL (I2C_REGISTERS_BASE_ADDRESS+IICMDCNTL)
-#define IIC_STS (I2C_REGISTERS_BASE_ADDRESS+IICSTS)
-#define IIC_EXTSTS (I2C_REGISTERS_BASE_ADDRESS+IICEXTSTS)
-#define IIC_LSADR (I2C_REGISTERS_BASE_ADDRESS+IICLSADR)
-#define IIC_HSADR (I2C_REGISTERS_BASE_ADDRESS+IICHSADR)
-#define IIC_CLKDIV (I2C_REGISTERS_BASE_ADDRESS+IICCLKDIV)
-#define IIC_INTRMSK (I2C_REGISTERS_BASE_ADDRESS+IICINTRMSK)
-#define IIC_XFRCNT (I2C_REGISTERS_BASE_ADDRESS+IICXFRCNT)
-#define IIC_XTCNTLSS (I2C_REGISTERS_BASE_ADDRESS+IICXTCNTLSS)
-#define IIC_DIRECTCNTL (I2C_REGISTERS_BASE_ADDRESS+IICDIRECTCNTL)
-
-/* MDCNTL Register Bit definition */
-#define IIC_MDCNTL_HSCL 0x01
-#define IIC_MDCNTL_EUBS 0x02
-#define IIC_MDCNTL_FMDB 0x40
-#define IIC_MDCNTL_FSDB 0x80
-
-/* CNTL Register Bit definition */
-#define IIC_CNTL_PT 0x01
-#define IIC_CNTL_READ 0x02
-#define IIC_CNTL_CHT 0x04
-
-/* STS Register Bit definition */
-#define IIC_STS_PT 0X01
-#define IIC_STS_ERR 0X04
-#define IIC_STS_MDBS 0X20
-
-/* EXTSTS Register Bit definition */
-#define IIC_EXTSTS_XFRA 0X01
-#define IIC_EXTSTS_ICT 0X02
-#define IIC_EXTSTS_LA 0X04
-
-
#define IIC_OK 0
#define IIC_NOK 1
#define IIC_NOK_LA 2 /* Lost arbitration */
#define IIC_TIMEOUT 1 /* 1 seconde */
-/*
- * Handle page write settings.
- */
-#ifndef CFG_EEPROM_PAGE_WRITE_BITS
-#define CFG_EEPROM_PAGE_WRITE_BITS 0
-#endif
-
-/* Ensure I/O operations complete */
-/* __asm__ volatile("eieio"); */
-
static void _i2c_bus_reset (void)
{
int i, status;
- /* Reset status register */
- /* write 1 in SCMP and IRQA to clear these fields */
- out8 (IIC_STS, 0x0A);
-
- /* write 1 in IRQP IRQD LA ICT XFRA to clear these fields */
- out8 (IIC_EXTSTS, 0x8F);
- __asm__ volatile ("eieio");
-
/*
* Get current state, reset bus
* only if no transfers are pending.
} while ((status & IIC_STS_PT) && (i > 0));
/* Soft reset controller */
status = in8 (IIC_XTCNTLSS);
- out8 (IIC_XTCNTLSS, (status | 0x1));
+ out8 (IIC_XTCNTLSS, (status | IIC_XTCNTLSS_SRST));
__asm__ volatile ("eieio");
/* make sure where in initial state, data hi, clock hi */
out8 (IIC_DIRECTCNTL, 0xC);
udelay (1000); /* 1ms */
/* Unreset controller */
- out8 (IIC_XTCNTLSS, (status & ~0x1));
+ out8 (IIC_XTCNTLSS, (status & ~IIC_XTCNTLSS_SRST));
udelay (1000); /* 1ms */
}
out8 (IIC_MDCNTL, IIC_MDCNTL_FSDB | IIC_MDCNTL_FMDB);
__asm__ volatile ("eieio");
- /* Ignore General Call, 100kHz, slave transfers are ignored,
- disable interrupts, exit unknown bus state, enable hold
- SCL
- */
- val = in8 (IIC_MDCNTL) | IIC_MDCNTL_EUBS | IIC_MDCNTL_HSCL;
- __asm__ volatile ("eieio");
+ val = in8(IIC_MDCNTL);
+ __asm__ volatile ("eieio");
+
+ /* Ignore General Call, slave transfers are ignored,
+ disable interrupts, exit unknown bus state, enable hold
+ SCL
+ 100kHz normaly or FastMode for 400kHz and above
+ */
+
+ val |= IIC_MDCNTL_EUBS|IIC_MDCNTL_HSCL;
+ if( speed >= 400000 ){
+ val |= IIC_MDCNTL_FSM;
+ }
out8 (IIC_MDCNTL, val);
/* clear control reg */
out8 (IIC_CNTL, 0x00);
__asm__ volatile ("eieio");
+
}
-static
-int i2c_transfer (unsigned char command_is_reading, unsigned char address,
- unsigned short size_to_transfer, unsigned char data[])
-{
- int bytes_transfered;
- int result;
- int status;
- int i;
+/*
+ This code tries to use the features of the 405GP i2c
+ controller. It will transfer up to 4 bytes in one pass
+ on the loop. It only does out8(lbz) to the buffer when it
+ is possible to do out16(lhz) transfers.
- result = IIC_OK;
- bytes_transfered = 0;
+ cmd_type is 0 for write 1 for read.
- /* Check init */
- i = 10;
- do {
- /* Get status */
- status = in8 (IIC_STS);
- i--;
- } while ((status & IIC_STS_PT) && (i > 0));
- if (status & IIC_STS_PT) {
- result = IIC_NOK_TOUT;
- return (result);
- }
+ addr_len can take any value from 0-255, it is only limited
+ by the char, we could make it larger if needed. If it is
+ 0 we skip the address write cycle.
- /* 7-bit adressing */
- out8 (IIC_HMADR, 0);
- out8 (IIC_LMADR, address);
-
- while ((bytes_transfered < size_to_transfer) && (result == IIC_OK)) {
- /* Control register =
- Normal transfer, 7-bits adressing, Transfer 1 byte, Normal start,
- Transfer is a sequence of transfers
- Write/Read, Start transfer */
-
- /* ACTION => Start - Transfer - Ack - pause */
- /* ACTION - LAST BYTE => Start - Transfer - Nack - Stop */
- if (command_is_reading) {
- /* issue read command */
- if (bytes_transfered == size_to_transfer - 1) {
- out8 (IIC_CNTL, IIC_CNTL_READ | IIC_CNTL_PT);
- } else {
- out8 (IIC_CNTL, IIC_CNTL_READ |
- IIC_CNTL_CHT |
- IIC_CNTL_PT);
- }
- } else {
- /* Set buffer */
- out8 (IIC_MDBUF, data[bytes_transfered]);
- udelay (1);
- /* issue write command */
- if (bytes_transfered == size_to_transfer - 1) {
- out8 (IIC_CNTL, IIC_CNTL_PT);
- } else {
- out8 (IIC_CNTL, IIC_CNTL_CHT | IIC_CNTL_PT);
- }
- }
- __asm__ volatile ("eieio");
-
- /* Transfer is in progress */
- i = 20;
- do {
- /* Get status */
- status = in8 (IIC_STS);
- udelay (10);
- i--;
- } while ((status & IIC_STS_PT) && !(status & IIC_STS_ERR)
- && (i > 0));
-
- if (status & IIC_STS_ERR) {
- result = IIC_NOK;
- status = in8 (IIC_EXTSTS);
- /* Lost arbitration? */
- if (status & IIC_EXTSTS_LA)
- result = IIC_NOK_LA;
- /* Incomplete transfer? */
- if (status & IIC_EXTSTS_ICT)
- result = IIC_NOK_ICT;
- /* Transfer aborted? */
- if (status & IIC_EXTSTS_XFRA)
- result = IIC_NOK_XFRA;
- } else if (status & IIC_STS_PT) {
- result = IIC_NOK_TOUT;
- }
- /* Command is reading => get buffer */
- if ((command_is_reading) && (result == IIC_OK)) {
- /* Are there data in buffer */
- if (status & IIC_STS_MDBS) {
- udelay (1);
- data[bytes_transfered] = in8 (IIC_MDBUF);
- } else
- result = IIC_NOK_DATA;
- }
- bytes_transfered++;
- }
- return (result);
-}
+ Typical case is a Write of an addr followd by a Read. The
+ IBM FAQ does not cover this. On the last byte of the write
+ we don't set the creg CHT bit, and on the first bytes of the
+ read we set the RPST bit.
-static
-int i2c_receive (unsigned char address,
- unsigned short size_to_expect, unsigned char datain[])
-{
- int status;
+ It does not support address only transfers, there must be
+ a data part. If you want to write the address yourself, put
+ it in the data pointer.
- status = i2c_transfer (1, address, size_to_expect, datain);
- return status;
-}
+ It does not support transfer to/from address 0.
+ It does not check XFRCNT.
+*/
static
-int i2c_send (unsigned char address,
- unsigned short size_to_send, unsigned char dataout[])
+int i2c_transfer(unsigned char cmd_type,
+ unsigned char chip,
+ unsigned char addr[],
+ unsigned char addr_len,
+ unsigned char data[],
+ unsigned short data_len )
{
- int status;
-
- status = i2c_transfer (0, address, size_to_send, dataout);
- return status;
+ unsigned char* ptr;
+ int reading;
+ int tran,cnt;
+ int result;
+ int status;
+ int i;
+ uchar creg;
+
+ if( data == 0 || data_len == 0 ){
+ /*Don't support data transfer of no length or to address 0*/
+ printf( "i2c_transfer: bad call\n" );
+ return IIC_NOK;
+ }
+ if( addr && addr_len ){
+ ptr = addr;
+ cnt = addr_len;
+ reading = 0;
+ }else{
+ ptr = data;
+ cnt = data_len;
+ reading = cmd_type;
+ }
+
+ /*Clear Stop Complete Bit*/
+ out8(IIC_STS,IIC_STS_SCMP);
+ /* Check init */
+ i=10;
+ do {
+ /* Get status */
+ status = in8(IIC_STS);
+ __asm__ volatile("eieio");
+ i--;
+ } while ((status & IIC_STS_PT) && (i>0));
+
+ if (status & IIC_STS_PT) {
+ result = IIC_NOK_TOUT;
+ return(result);
+ }
+ /*flush the Master/Slave Databuffers*/
+ out8(IIC_MDCNTL, ((in8(IIC_MDCNTL))|IIC_MDCNTL_FMDB|IIC_MDCNTL_FSDB));
+ /*need to wait 4 OPB clocks? code below should take that long*/
+
+ /* 7-bit adressing */
+ out8(IIC_HMADR,0);
+ out8(IIC_LMADR, chip);
+ __asm__ volatile("eieio");
+
+ tran = 0;
+ result = IIC_OK;
+ creg = 0;
+
+ while ( tran != cnt && (result == IIC_OK)) {
+ int bc,j;
+
+ /* Control register =
+ Normal transfer, 7-bits adressing, Transfer up to bc bytes, Normal start,
+ Transfer is a sequence of transfers
+ */
+ creg |= IIC_CNTL_PT;
+
+ bc = (cnt - tran) > 4 ? 4 :
+ cnt - tran;
+ creg |= (bc-1)<<4;
+ /* if the real cmd type is write continue trans*/
+ if ( (!cmd_type && (ptr == addr)) || ((tran+bc) != cnt) )
+ creg |= IIC_CNTL_CHT;
+
+ if (reading)
+ creg |= IIC_CNTL_READ;
+ else {
+ for(j=0; j<bc; j++) {
+ /* Set buffer */
+ out8(IIC_MDBUF,ptr[tran+j]);
+ __asm__ volatile("eieio");
+ }
+ }
+ out8(IIC_CNTL, creg );
+ __asm__ volatile("eieio");
+
+ /* Transfer is in progress
+ we have to wait for upto 5 bytes of data
+ 1 byte chip address+r/w bit then bc bytes
+ of data.
+ udelay(10) is 1 bit time at 100khz
+ Doubled for slop. 20 is too small.
+ */
+ i=2*5*8;
+ do {
+ /* Get status */
+ status = in8(IIC_STS);
+ __asm__ volatile("eieio");
+ udelay (10);
+ i--;
+ } while ((status & IIC_STS_PT) && !(status & IIC_STS_ERR)
+ && (i>0));
+
+ if (status & IIC_STS_ERR) {
+ result = IIC_NOK;
+ status = in8 (IIC_EXTSTS);
+ /* Lost arbitration? */
+ if (status & IIC_EXTSTS_LA)
+ result = IIC_NOK_LA;
+ /* Incomplete transfer? */
+ if (status & IIC_EXTSTS_ICT)
+ result = IIC_NOK_ICT;
+ /* Transfer aborted? */
+ if (status & IIC_EXTSTS_XFRA)
+ result = IIC_NOK_XFRA;
+ } else if ( status & IIC_STS_PT) {
+ result = IIC_NOK_TOUT;
+ }
+ /* Command is reading => get buffer */
+ if ((reading) && (result == IIC_OK)) {
+ /* Are there data in buffer */
+ if (status & IIC_STS_MDBS) {
+ /*
+ even if we have data we have to wait 4OPB clocks
+ for it to hit the front of the FIFO, after that
+ we can just read. We should check XFCNT here and
+ if the FIFO is full there is no need to wait.
+ */
+ udelay (1);
+ for(j=0;j<bc;j++) {
+ ptr[tran+j] = in8(IIC_MDBUF);
+ __asm__ volatile("eieio");
+ }
+ } else
+ result = IIC_NOK_DATA;
+ }
+ creg = 0;
+ tran+=bc;
+ if( ptr == addr && tran == cnt ) {
+ ptr = data;
+ cnt = data_len;
+ tran = 0;
+ reading = cmd_type;
+ if( reading )
+ creg = IIC_CNTL_RPST;
+ }
+ }
+ return (result);
}
int i2c_probe (uchar chip)
buf[0] = 0;
- /*
- * What is needed is to send the chip address and verify that the
- * address was <ACK>ed (i.e. there was a chip at that address which
- * drove the data line low).
- */
- return (i2c_send (chip << 1, 1, buf) != 0);
+ /*
+ * What is needed is to send the chip address and verify that the
+ * address was <ACK>ed (i.e. there was a chip at that address which
+ * drove the data line low).
+ */
+ return(i2c_transfer (1, chip << 1, 0,0, buf, 1) != 0);
}
+
int i2c_read (uchar chip, uint addr, int alen, uchar * buffer, int len)
{
- uchar xaddr[4];
- int rcode = 0;
+ uchar xaddr[4];
+ int ret;
- if ((alen < 1) || (alen > 2)) {
+ if ( alen > 4 ) {
printf ("I2C read: addr len %d not supported\n", alen);
return 1;
}
- xaddr[0] = (addr >> 24) & 0xFF;
- xaddr[1] = (addr >> 16) & 0xFF;
- xaddr[2] = (addr >> 8) & 0xFF;
- xaddr[3] = addr & 0xFF;
-
-#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
- /*
- * EEPROM chips that implement "address overflow" are ones
- * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
- * address and the extra bits end up in the "chip address"
- * bit slots. This makes a 24WC08 (1Kbyte) chip look like
- * four 256 byte chips.
- *
- * Note that we consider the length of the address field to
- * still be one byte because the extra address bits are
- * hidden in the chip address.
- */
- chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
-#endif
-
- if (i2c_send (chip << 1, alen, &xaddr[4 - alen]) != 0)
- rcode = 1;
- if (i2c_receive ((chip << 1) | 0x01, len, buffer) != 0)
- rcode = 1;
- return rcode;
-}
+ if ( alen > 0 ) {
+ xaddr[0] = (addr >> 24) & 0xFF;
+ xaddr[1] = (addr >> 16) & 0xFF;
+ xaddr[2] = (addr >> 8) & 0xFF;
+ xaddr[3] = addr & 0xFF;
+ }
-#ifndef CFG_EEPROM_PAGE_WRITE_ENABLE
-int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len)
-{
- uchar xbuf[3];
-
- if ((alen < 1) || (alen > 2)) {
- printf ("I2C write: addr len %d not supported\n", alen);
- return 1;
- }
#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones
* still be one byte because the extra address bits are
* hidden in the chip address.
*/
- chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
+ if( alen > 0 )
+ chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
#endif
-
- /* write with ack polling */
- while (len-- > 0) {
- xbuf[0] = (addr >> 8) & 0xFF; /* High addr (if used) */
- xbuf[1] = addr & 0xFF; /* Low addr */
- xbuf[2] = *buffer++;
- addr++; /* increase write offset */
- /* single write + ack polling */
- while (i2c_send (chip << 1, alen + 1, &xbuf[2 - alen]) != 0) {
- udelay (100);
- }
- }
- return 0;
+ if( (ret = i2c_transfer( 1, chip<<1, &xaddr[4-alen], alen, buffer, len )) != 0) {
+ printf( "I2c read: failed %d\n", ret);
+ return 1;
+ }
+ return 0;
}
-#else /* CFG_EEPROM_PAGE_WRITE_ENABLE */
-
int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len)
{
- /* buffer for one page + addresses */
- uchar wbuffer[(1 << CFG_EEPROM_PAGE_WRITE_BITS) + 2];
- int i;
+ uchar xaddr[4];
- if ((alen < 1) || (alen > 2)) {
- printf ("I2C read: addr len %d not supported\n", alen);
+ if ( alen > 4 ) {
+ printf ("I2C write: addr len %d not supported\n", alen);
return 1;
- }
-
- /* fill in the address first */
- wbuffer[0] = (addr >> 8) & 0xFF; /* High addr (if used) */
- wbuffer[1] = addr & 0xFF; /* Low addr */
- for (i = 2; i < len + 2; i++) {
- wbuffer[i] = *buffer++; /* copy data */
}
+ if ( alen > 0 ) {
+ xaddr[0] = (addr >> 24) & 0xFF;
+ xaddr[1] = (addr >> 16) & 0xFF;
+ xaddr[2] = (addr >> 8) & 0xFF;
+ xaddr[3] = addr & 0xFF;
+ }
#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
/*
* still be one byte because the extra address bits are
* hidden in the chip address.
*/
- chip |= ((addr >> alen) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
+ if( alen > 0 )
+ chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
#endif
- /* write page + ack polling */
- while (i2c_send (chip << 1, alen + len, &wbuffer[2 - alen]) != 0) {
- udelay (100);
- }
-
- return 0;
+ return (i2c_transfer( 0, chip<<1, &xaddr[4-alen], alen, buffer, len ) != 0);
}
-#endif /* CFG_EEPROM_PAGE_WRITE_ENABLE */
#endif /* CONFIG_HARD_I2C */