--- /dev/null
+/*
+ * Copyright (c) 2016, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/clk.h>
+#include <linux/clk-provider.h>
+
+#include "dsi_pll.h"
+#include "dsi.xml.h"
+
+/*
+ * DSI PLL 14nm - clock diagram (eg: DSI0):
+ *
+ *         dsi0n1_postdiv_clk
+ *                         |
+ *                         |
+ *                 +----+  |  +----+
+ *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
+ *                 +----+  |  +----+
+ *                         |           dsi0n1_postdivby2_clk
+ *                         |   +----+  |
+ *                         o---| /2 |--o--|\
+ *                         |   +----+     | \   +----+
+ *                         |              |  |--| n2 |-- dsi0pll
+ *                         o--------------| /   +----+
+ *                                        |/
+ */
+
+#define POLL_MAX_READS                 15
+#define POLL_TIMEOUT_US                        1000
+
+#define NUM_PROVIDED_CLKS              2
+
+#define VCO_REF_CLK_RATE               19200000
+#define VCO_MIN_RATE                   1300000000UL
+#define VCO_MAX_RATE                   2600000000UL
+
+#define DSI_BYTE_PLL_CLK               0
+#define DSI_PIXEL_PLL_CLK              1
+
+#define DSI_PLL_DEFAULT_VCO_POSTDIV    1
+
+struct dsi_pll_input {
+       u32 fref;       /* reference clk */
+       u32 fdata;      /* bit clock rate */
+       u32 dsiclk_sel; /* Mux configuration (see diagram) */
+       u32 ssc_en;     /* SSC enable/disable */
+       u32 ldo_en;
+
+       /* fixed params */
+       u32 refclk_dbler_en;
+       u32 vco_measure_time;
+       u32 kvco_measure_time;
+       u32 bandgap_timer;
+       u32 pll_wakeup_timer;
+       u32 plllock_cnt;
+       u32 plllock_rng;
+       u32 ssc_center;
+       u32 ssc_adj_period;
+       u32 ssc_spread;
+       u32 ssc_freq;
+       u32 pll_ie_trim;
+       u32 pll_ip_trim;
+       u32 pll_iptat_trim;
+       u32 pll_cpcset_cur;
+       u32 pll_cpmset_cur;
+
+       u32 pll_icpmset;
+       u32 pll_icpcset;
+
+       u32 pll_icpmset_p;
+       u32 pll_icpmset_m;
+
+       u32 pll_icpcset_p;
+       u32 pll_icpcset_m;
+
+       u32 pll_lpf_res1;
+       u32 pll_lpf_cap1;
+       u32 pll_lpf_cap2;
+       u32 pll_c3ctrl;
+       u32 pll_r3ctrl;
+};
+
+struct dsi_pll_output {
+       u32 pll_txclk_en;
+       u32 dec_start;
+       u32 div_frac_start;
+       u32 ssc_period;
+       u32 ssc_step_size;
+       u32 plllock_cmp;
+       u32 pll_vco_div_ref;
+       u32 pll_vco_count;
+       u32 pll_kvco_div_ref;
+       u32 pll_kvco_count;
+       u32 pll_misc1;
+       u32 pll_lpf2_postdiv;
+       u32 pll_resetsm_cntrl;
+       u32 pll_resetsm_cntrl2;
+       u32 pll_resetsm_cntrl5;
+       u32 pll_kvco_code;
+
+       u32 cmn_clk_cfg0;
+       u32 cmn_clk_cfg1;
+       u32 cmn_ldo_cntrl;
+
+       u32 pll_postdiv;
+       u32 fcvo;
+};
+
+struct pll_14nm_cached_state {
+       unsigned long vco_rate;
+       u8 n2postdiv;
+       u8 n1postdiv;
+};
+
+struct dsi_pll_14nm {
+       struct msm_dsi_pll base;
+
+       int id;
+       struct platform_device *pdev;
+
+       void __iomem *phy_cmn_mmio;
+       void __iomem *mmio;
+
+       int vco_delay;
+
+       struct dsi_pll_input in;
+       struct dsi_pll_output out;
+
+       /* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
+       spinlock_t postdiv_lock;
+
+       u64 vco_current_rate;
+       u64 vco_ref_clk_rate;
+
+       /* private clocks: */
+       struct clk_hw *hws[NUM_DSI_CLOCKS_MAX];
+       u32 num_hws;
+
+       /* clock-provider: */
+       struct clk_hw_onecell_data *hw_data;
+
+       struct pll_14nm_cached_state cached_state;
+
+       enum msm_dsi_phy_usecase uc;
+       struct dsi_pll_14nm *slave;
+};
+
+#define to_pll_14nm(x) container_of(x, struct dsi_pll_14nm, base)
+
+/*
+ * Private struct for N1/N2 post-divider clocks. These clocks are similar to
+ * the generic clk_divider class of clocks. The only difference is that it
+ * also sets the slave DSI PLL's post-dividers if in Dual DSI mode
+ */
+struct dsi_pll_14nm_postdiv {
+       struct clk_hw hw;
+
+       /* divider params */
+       u8 shift;
+       u8 width;
+       u8 flags; /* same flags as used by clk_divider struct */
+
+       struct dsi_pll_14nm *pll;
+};
+
+#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
+
+/*
+ * Global list of private DSI PLL struct pointers. We need this for Dual DSI
+ * mode, where the master PLL's clk_ops needs access the slave's private data
+ */
+static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
+
+static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
+                                   u32 nb_tries, u32 timeout_us)
+{
+       bool pll_locked = false;
+       void __iomem *base = pll_14nm->mmio;
+       u32 tries, val;
+
+       tries = nb_tries;
+       while (tries--) {
+               val = pll_read(base +
+                              REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
+               pll_locked = !!(val & BIT(5));
+
+               if (pll_locked)
+                       break;
+
+               udelay(timeout_us);
+       }
+
+       if (!pll_locked) {
+               tries = nb_tries;
+               while (tries--) {
+                       val = pll_read(base +
+                               REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
+                       pll_locked = !!(val & BIT(0));
+
+                       if (pll_locked)
+                               break;
+
+                       udelay(timeout_us);
+               }
+       }
+
+       DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
+
+       return pll_locked;
+}
+
+static void dsi_pll_14nm_input_init(struct dsi_pll_14nm *pll)
+{
+       pll->in.fref = pll->vco_ref_clk_rate;
+       pll->in.fdata = 0;
+       pll->in.dsiclk_sel = 1; /* Use the /2 path in Mux */
+       pll->in.ldo_en = 0;     /* disabled for now */
+
+       /* fixed input */
+       pll->in.refclk_dbler_en = 0;
+       pll->in.vco_measure_time = 5;
+       pll->in.kvco_measure_time = 5;
+       pll->in.bandgap_timer = 4;
+       pll->in.pll_wakeup_timer = 5;
+       pll->in.plllock_cnt = 1;
+       pll->in.plllock_rng = 0;
+
+       /*
+        * SSC is enabled by default. We might need DT props for configuring
+        * some SSC params like PPM and center/down spread etc.
+        */
+       pll->in.ssc_en = 1;
+       pll->in.ssc_center = 0;         /* down spread by default */
+       pll->in.ssc_spread = 5;         /* PPM / 1000 */
+       pll->in.ssc_freq = 31500;       /* default recommended */
+       pll->in.ssc_adj_period = 37;
+
+       pll->in.pll_ie_trim = 4;
+       pll->in.pll_ip_trim = 4;
+       pll->in.pll_cpcset_cur = 1;
+       pll->in.pll_cpmset_cur = 1;
+       pll->in.pll_icpmset = 4;
+       pll->in.pll_icpcset = 4;
+       pll->in.pll_icpmset_p = 0;
+       pll->in.pll_icpmset_m = 0;
+       pll->in.pll_icpcset_p = 0;
+       pll->in.pll_icpcset_m = 0;
+       pll->in.pll_lpf_res1 = 3;
+       pll->in.pll_lpf_cap1 = 11;
+       pll->in.pll_lpf_cap2 = 1;
+       pll->in.pll_iptat_trim = 7;
+       pll->in.pll_c3ctrl = 2;
+       pll->in.pll_r3ctrl = 1;
+}
+
+#define CEIL(x, y)             (((x) + ((y) - 1)) / (y))
+
+static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll)
+{
+       u32 period, ssc_period;
+       u32 ref, rem;
+       u64 step_size;
+
+       DBG("vco=%lld ref=%lld", pll->vco_current_rate, pll->vco_ref_clk_rate);
+
+       ssc_period = pll->in.ssc_freq / 500;
+       period = (u32)pll->vco_ref_clk_rate / 1000;
+       ssc_period  = CEIL(period, ssc_period);
+       ssc_period -= 1;
+       pll->out.ssc_period = ssc_period;
+
+       DBG("ssc freq=%d spread=%d period=%d", pll->in.ssc_freq,
+           pll->in.ssc_spread, pll->out.ssc_period);
+
+       step_size = (u32)pll->vco_current_rate;
+       ref = pll->vco_ref_clk_rate;
+       ref /= 1000;
+       step_size = div_u64(step_size, ref);
+       step_size <<= 20;
+       step_size = div_u64(step_size, 1000);
+       step_size *= pll->in.ssc_spread;
+       step_size = div_u64(step_size, 1000);
+       step_size *= (pll->in.ssc_adj_period + 1);
+
+       rem = 0;
+       step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
+       if (rem)
+               step_size++;
+
+       DBG("step_size=%lld", step_size);
+
+       step_size &= 0x0ffff;   /* take lower 16 bits */
+
+       pll->out.ssc_step_size = step_size;
+}
+
+static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll)
+{
+       struct dsi_pll_input *pin = &pll->in;
+       struct dsi_pll_output *pout = &pll->out;
+       u64 multiplier = BIT(20);
+       u64 dec_start_multiple, dec_start, pll_comp_val;
+       u32 duration, div_frac_start;
+       u64 vco_clk_rate = pll->vco_current_rate;
+       u64 fref = pll->vco_ref_clk_rate;
+
+       DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
+
+       dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
+       div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
+
+       dec_start = div_u64(dec_start_multiple, multiplier);
+
+       pout->dec_start = (u32)dec_start;
+       pout->div_frac_start = div_frac_start;
+
+       if (pin->plllock_cnt == 0)
+               duration = 1024;
+       else if (pin->plllock_cnt == 1)
+               duration = 256;
+       else if (pin->plllock_cnt == 2)
+               duration = 128;
+       else
+               duration = 32;
+
+       pll_comp_val = duration * dec_start_multiple;
+       pll_comp_val = div_u64(pll_comp_val, multiplier);
+       do_div(pll_comp_val, 10);
+
+       pout->plllock_cmp = (u32)pll_comp_val;
+
+       pout->pll_txclk_en = 1;
+       pout->cmn_ldo_cntrl = 0x3c;
+}
+
+static u32 pll_14nm_kvco_slop(u32 vrate)
+{
+       u32 slop = 0;
+
+       if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
+               slop =  600;
+       else if (vrate > 1800000000UL && vrate < 2300000000UL)
+               slop = 400;
+       else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
+               slop = 280;
+
+       return slop;
+}
+
+static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll)
+{
+       struct dsi_pll_input *pin = &pll->in;
+       struct dsi_pll_output *pout = &pll->out;
+       u64 vco_clk_rate = pll->vco_current_rate;
+       u64 fref = pll->vco_ref_clk_rate;
+       u64 data;
+       u32 cnt;
+
+       data = fref * pin->vco_measure_time;
+       do_div(data, 1000000);
+       data &= 0x03ff; /* 10 bits */
+       data -= 2;
+       pout->pll_vco_div_ref = data;
+
+       data = div_u64(vco_clk_rate, 1000000);  /* unit is Mhz */
+       data *= pin->vco_measure_time;
+       do_div(data, 10);
+       pout->pll_vco_count = data;
+
+       data = fref * pin->kvco_measure_time;
+       do_div(data, 1000000);
+       data &= 0x03ff; /* 10 bits */
+       data -= 1;
+       pout->pll_kvco_div_ref = data;
+
+       cnt = pll_14nm_kvco_slop(vco_clk_rate);
+       cnt *= 2;
+       cnt /= 100;
+       cnt *= pin->kvco_measure_time;
+       pout->pll_kvco_count = cnt;
+
+       pout->pll_misc1 = 16;
+       pout->pll_resetsm_cntrl = 48;
+       pout->pll_resetsm_cntrl2 = pin->bandgap_timer << 3;
+       pout->pll_resetsm_cntrl5 = pin->pll_wakeup_timer;
+       pout->pll_kvco_code = 0;
+}
+
+static void pll_db_commit_ssc(struct dsi_pll_14nm *pll)
+{
+       void __iomem *base = pll->mmio;
+       struct dsi_pll_input *pin = &pll->in;
+       struct dsi_pll_output *pout = &pll->out;
+       u8 data;
+
+       data = pin->ssc_adj_period;
+       data &= 0x0ff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
+       data = (pin->ssc_adj_period >> 8);
+       data &= 0x03;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
+
+       data = pout->ssc_period;
+       data &= 0x0ff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
+       data = (pout->ssc_period >> 8);
+       data &= 0x0ff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
+
+       data = pout->ssc_step_size;
+       data &= 0x0ff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
+       data = (pout->ssc_step_size >> 8);
+       data &= 0x0ff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
+
+       data = (pin->ssc_center & 0x01);
+       data <<= 1;
+       data |= 0x01; /* enable */
+       pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
+
+       wmb();  /* make sure register committed */
+}
+
+static void pll_db_commit_common(struct dsi_pll_14nm *pll,
+                                struct dsi_pll_input *pin,
+                                struct dsi_pll_output *pout)
+{
+       void __iomem *base = pll->mmio;
+       u8 data;
+
+       /* confgiure the non frequency dependent pll registers */
+       data = 0;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
+
+       data = pout->pll_txclk_en;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, data);
+
+       data = pout->pll_resetsm_cntrl;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, data);
+       data = pout->pll_resetsm_cntrl2;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, data);
+       data = pout->pll_resetsm_cntrl5;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, data);
+
+       data = pout->pll_vco_div_ref & 0xff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
+       data = (pout->pll_vco_div_ref >> 8) & 0x3;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
+
+       data = pout->pll_kvco_div_ref & 0xff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
+       data = (pout->pll_kvco_div_ref >> 8) & 0x3;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
+
+       data = pout->pll_misc1;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, data);
+
+       data = pin->pll_ie_trim;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, data);
+
+       data = pin->pll_ip_trim;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, data);
+
+       data = pin->pll_cpmset_cur << 3 | pin->pll_cpcset_cur;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, data);
+
+       data = pin->pll_icpcset_p << 3 | pin->pll_icpcset_m;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, data);
+
+       data = pin->pll_icpmset_p << 3 | pin->pll_icpcset_m;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, data);
+
+       data = pin->pll_icpmset << 3 | pin->pll_icpcset;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, data);
+
+       data = pin->pll_lpf_cap2 << 4 | pin->pll_lpf_cap1;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, data);
+
+       data = pin->pll_iptat_trim;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, data);
+
+       data = pin->pll_c3ctrl | pin->pll_r3ctrl << 4;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, data);
+}
+
+static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
+{
+       void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
+
+       /* de assert pll start and apply pll sw reset */
+
+       /* stop pll */
+       pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
+
+       /* pll sw reset */
+       pll_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
+       wmb();  /* make sure register committed */
+
+       pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
+       wmb();  /* make sure register committed */
+}
+
+static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
+                              struct dsi_pll_input *pin,
+                              struct dsi_pll_output *pout)
+{
+       void __iomem *base = pll->mmio;
+       void __iomem *cmn_base = pll->phy_cmn_mmio;
+       u8 data;
+
+       DBG("DSI%d PLL", pll->id);
+
+       data = pout->cmn_ldo_cntrl;
+       pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
+
+       pll_db_commit_common(pll, pin, pout);
+
+       pll_14nm_software_reset(pll);
+
+       data = pin->dsiclk_sel; /* set dsiclk_sel = 1  */
+       pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, data);
+
+       data = 0xff; /* data, clk, pll normal operation */
+       pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
+
+       /* configure the frequency dependent pll registers */
+       data = pout->dec_start;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
+
+       data = pout->div_frac_start & 0xff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
+       data = (pout->div_frac_start >> 8) & 0xff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
+       data = (pout->div_frac_start >> 16) & 0xf;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
+
+       data = pout->plllock_cmp & 0xff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
+
+       data = (pout->plllock_cmp >> 8) & 0xff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
+
+       data = (pout->plllock_cmp >> 16) & 0x3;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
+
+       data = pin->plllock_cnt << 1 | pin->plllock_rng << 3;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
+
+       data = pout->pll_vco_count & 0xff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
+       data = (pout->pll_vco_count >> 8) & 0xff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
+
+       data = pout->pll_kvco_count & 0xff;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
+       data = (pout->pll_kvco_count >> 8) & 0x3;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
+
+       data = (pout->pll_postdiv - 1) << 4 | pin->pll_lpf_res1;
+       pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, data);
+
+       if (pin->ssc_en)
+               pll_db_commit_ssc(pll);
+
+       wmb();  /* make sure register committed */
+}
+
+/*
+ * VCO clock Callbacks
+ */
+static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
+                                    unsigned long parent_rate)
+{
+       struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
+       struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
+       struct dsi_pll_input *pin = &pll_14nm->in;
+       struct dsi_pll_output *pout = &pll_14nm->out;
+
+       DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->id, rate,
+           parent_rate);
+
+       pll_14nm->vco_current_rate = rate;
+       pll_14nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;
+
+       dsi_pll_14nm_input_init(pll_14nm);
+
+       /*
+        * This configures the post divider internal to the VCO. It's
+        * fixed to divide by 1 for now.
+        *
+        * tx_band = pll_postdiv.
+        * 0: divided by 1
+        * 1: divided by 2
+        * 2: divided by 4
+        * 3: divided by 8
+        */
+       pout->pll_postdiv = DSI_PLL_DEFAULT_VCO_POSTDIV;
+
+       pll_14nm_dec_frac_calc(pll_14nm);
+
+       if (pin->ssc_en)
+               pll_14nm_ssc_calc(pll_14nm);
+
+       pll_14nm_calc_vco_count(pll_14nm);
+
+       /* commit the slave DSI PLL registers if we're master. Note that we
+        * don't lock the slave PLL. We just ensure that the PLL/PHY registers
+        * of the master and slave are identical
+        */
+       if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
+               struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
+
+               pll_db_commit_14nm(pll_14nm_slave, pin, pout);
+       }
+
+       pll_db_commit_14nm(pll_14nm, pin, pout);
+
+       return 0;
+}
+
+static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
+                                                 unsigned long parent_rate)
+{
+       struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
+       struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
+       void __iomem *base = pll_14nm->mmio;
+       u64 vco_rate, multiplier = BIT(20);
+       u32 div_frac_start;
+       u32 dec_start;
+       u64 ref_clk = parent_rate;
+
+       dec_start = pll_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
+       dec_start &= 0x0ff;
+
+       DBG("dec_start = %x", dec_start);
+
+       div_frac_start = (pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
+                               & 0xf) << 16;
+       div_frac_start |= (pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
+                               & 0xff) << 8;
+       div_frac_start |= pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
+                               & 0xff;
+
+       DBG("div_frac_start = %x", div_frac_start);
+
+       vco_rate = ref_clk * dec_start;
+
+       vco_rate += ((ref_clk * div_frac_start) / multiplier);
+
+       /*
+        * Recalculating the rate from dec_start and frac_start doesn't end up
+        * the rate we originally set. Convert the freq to KHz, round it up and
+        * convert it back to MHz.
+        */
+       vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
+
+       DBG("returning vco rate = %lu", (unsigned long)vco_rate);
+
+       return (unsigned long)vco_rate;
+}
+
+static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
+       .round_rate = msm_dsi_pll_helper_clk_round_rate,
+       .set_rate = dsi_pll_14nm_vco_set_rate,
+       .recalc_rate = dsi_pll_14nm_vco_recalc_rate,
+       .prepare = msm_dsi_pll_helper_clk_prepare,
+       .unprepare = msm_dsi_pll_helper_clk_unprepare,
+};
+
+/*
+ * N1 and N2 post-divider clock callbacks
+ */
+#define div_mask(width)        ((1 << (width)) - 1)
+static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
+                                                     unsigned long parent_rate)
+{
+       struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
+       struct dsi_pll_14nm *pll_14nm = postdiv->pll;
+       void __iomem *base = pll_14nm->phy_cmn_mmio;
+       u8 shift = postdiv->shift;
+       u8 width = postdiv->width;
+       u32 val;
+
+       DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, parent_rate);
+
+       val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
+       val &= div_mask(width);
+
+       return divider_recalc_rate(hw, parent_rate, val, NULL,
+                                  postdiv->flags);
+}
+
+static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
+                                           unsigned long rate,
+                                           unsigned long *prate)
+{
+       struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
+       struct dsi_pll_14nm *pll_14nm = postdiv->pll;
+
+       DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, rate);
+
+       return divider_round_rate(hw, rate, prate, NULL,
+                                 postdiv->width,
+                                 postdiv->flags);
+}
+
+static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
+                                        unsigned long parent_rate)
+{
+       struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
+       struct dsi_pll_14nm *pll_14nm = postdiv->pll;
+       void __iomem *base = pll_14nm->phy_cmn_mmio;
+       spinlock_t *lock = &pll_14nm->postdiv_lock;
+       u8 shift = postdiv->shift;
+       u8 width = postdiv->width;
+       unsigned int value;
+       unsigned long flags = 0;
+       u32 val;
+
+       DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->id, rate,
+           parent_rate);
+
+       value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
+                               postdiv->flags);
+
+       spin_lock_irqsave(lock, flags);
+
+       val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
+       val &= ~(div_mask(width) << shift);
+
+       val |= value << shift;
+       pll_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
+
+       /* If we're master in dual DSI mode, then the slave PLL's post-dividers
+        * follow the master's post dividers
+        */
+       if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
+               struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
+               void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;
+
+               pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
+       }
+
+       spin_unlock_irqrestore(lock, flags);
+
+       return 0;
+}
+
+static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
+       .recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
+       .round_rate = dsi_pll_14nm_postdiv_round_rate,
+       .set_rate = dsi_pll_14nm_postdiv_set_rate,
+};
+
+/*
+ * PLL Callbacks
+ */
+
+static int dsi_pll_14nm_enable_seq(struct msm_dsi_pll *pll)
+{
+       struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
+       void __iomem *base = pll_14nm->mmio;
+       void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
+       bool locked;
+
+       DBG("");
+
+       pll_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
+       pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
+
+       locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
+                                        POLL_TIMEOUT_US);
+
+       if (unlikely(!locked))
+               dev_err(&pll_14nm->pdev->dev, "DSI PLL lock failed\n");
+       else
+               DBG("DSI PLL lock success");
+
+       return locked ? 0 : -EINVAL;
+}
+
+static void dsi_pll_14nm_disable_seq(struct msm_dsi_pll *pll)
+{
+       struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
+       void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
+
+       DBG("");
+
+       pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
+}
+
+static void dsi_pll_14nm_save_state(struct msm_dsi_pll *pll)
+{
+       struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
+       struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
+       void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
+       u32 data;
+
+       data = pll_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
+
+       cached_state->n1postdiv = data & 0xf;
+       cached_state->n2postdiv = (data >> 4) & 0xf;
+
+       DBG("DSI%d PLL save state %x %x", pll_14nm->id,
+           cached_state->n1postdiv, cached_state->n2postdiv);
+
+       cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
+}
+
+static int dsi_pll_14nm_restore_state(struct msm_dsi_pll *pll)
+{
+       struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
+       struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
+       void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
+       u32 data;
+       int ret;
+
+       ret = dsi_pll_14nm_vco_set_rate(&pll->clk_hw,
+                                       cached_state->vco_rate, 0);
+       if (ret) {
+               dev_err(&pll_14nm->pdev->dev,
+                       "restore vco rate failed. ret=%d\n", ret);
+               return ret;
+       }
+
+       data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
+
+       DBG("DSI%d PLL restore state %x %x", pll_14nm->id,
+           cached_state->n1postdiv, cached_state->n2postdiv);
+
+       pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
+
+       /* also restore post-dividers for slave DSI PLL */
+       if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
+               struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
+               void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;
+
+               pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
+       }
+
+       return 0;
+}
+
+static int dsi_pll_14nm_set_usecase(struct msm_dsi_pll *pll,
+                                   enum msm_dsi_phy_usecase uc)
+{
+       struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
+       void __iomem *base = pll_14nm->mmio;
+       u32 clkbuflr_en, bandgap = 0;
+
+       switch (uc) {
+       case MSM_DSI_PHY_STANDALONE:
+               clkbuflr_en = 0x1;
+               break;
+       case MSM_DSI_PHY_MASTER:
+               clkbuflr_en = 0x3;
+               pll_14nm->slave = pll_14nm_list[(pll_14nm->id + 1) % DSI_MAX];
+               break;
+       case MSM_DSI_PHY_SLAVE:
+               clkbuflr_en = 0x0;
+               bandgap = 0x3;
+               break;
+       default:
+               return -EINVAL;
+       }
+
+       pll_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
+       if (bandgap)
+               pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
+
+       pll_14nm->uc = uc;
+
+       return 0;
+}
+
+static int dsi_pll_14nm_get_provider(struct msm_dsi_pll *pll,
+                                    struct clk **byte_clk_provider,
+                                    struct clk **pixel_clk_provider)
+{
+       struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
+       struct clk_hw_onecell_data *hw_data = pll_14nm->hw_data;
+
+       if (byte_clk_provider)
+               *byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
+       if (pixel_clk_provider)
+               *pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
+
+       return 0;
+}
+
+static void dsi_pll_14nm_destroy(struct msm_dsi_pll *pll)
+{
+       struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
+       struct platform_device *pdev = pll_14nm->pdev;
+       int num_hws = pll_14nm->num_hws;
+
+       of_clk_del_provider(pdev->dev.of_node);
+
+       while (num_hws--)
+               clk_hw_unregister(pll_14nm->hws[num_hws]);
+}
+
+static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
+                                               const char *name,
+                                               const char *parent_name,
+                                               unsigned long flags,
+                                               u8 shift)
+{
+       struct dsi_pll_14nm_postdiv *pll_postdiv;
+       struct device *dev = &pll_14nm->pdev->dev;
+       struct clk_init_data postdiv_init = {
+               .parent_names = (const char *[]) { parent_name },
+               .num_parents = 1,
+               .name = name,
+               .flags = flags,
+               .ops = &clk_ops_dsi_pll_14nm_postdiv,
+       };
+       int ret;
+
+       pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
+       if (!pll_postdiv)
+               return ERR_PTR(-ENOMEM);
+
+       pll_postdiv->pll = pll_14nm;
+       pll_postdiv->shift = shift;
+       /* both N1 and N2 postdividers are 4 bits wide */
+       pll_postdiv->width = 4;
+       /* range of each divider is from 1 to 15 */
+       pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
+       pll_postdiv->hw.init = &postdiv_init;
+
+       ret = clk_hw_register(dev, &pll_postdiv->hw);
+       if (ret)
+               return ERR_PTR(ret);
+
+       return &pll_postdiv->hw;
+}
+
+static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm)
+{
+       char clk_name[32], parent[32], vco_name[32];
+       struct clk_init_data vco_init = {
+               .parent_names = (const char *[]){ "xo" },
+               .num_parents = 1,
+               .name = vco_name,
+               .flags = CLK_IGNORE_UNUSED,
+               .ops = &clk_ops_dsi_pll_14nm_vco,
+       };
+       struct device *dev = &pll_14nm->pdev->dev;
+       struct clk_hw **hws = pll_14nm->hws;
+       struct clk_hw_onecell_data *hw_data;
+       struct clk_hw *hw;
+       int num = 0;
+       int ret;
+
+       DBG("DSI%d", pll_14nm->id);
+
+       hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
+                              NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
+                              GFP_KERNEL);
+       if (!hw_data)
+               return -ENOMEM;
+
+       snprintf(vco_name, 32, "dsi%dvco_clk", pll_14nm->id);
+       pll_14nm->base.clk_hw.init = &vco_init;
+
+       ret = clk_hw_register(dev, &pll_14nm->base.clk_hw);
+       if (ret)
+               return ret;
+
+       hws[num++] = &pll_14nm->base.clk_hw;
+
+       snprintf(clk_name, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
+       snprintf(parent, 32, "dsi%dvco_clk", pll_14nm->id);
+
+       /* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
+       hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent,
+                                      CLK_SET_RATE_PARENT, 0);
+       if (IS_ERR(hw))
+               return PTR_ERR(hw);
+
+       hws[num++] = hw;
+
+       snprintf(clk_name, 32, "dsi%dpllbyte", pll_14nm->id);
+       snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
+
+       /* DSI Byte clock = VCO_CLK / N1 / 8 */
+       hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
+                                         CLK_SET_RATE_PARENT, 1, 8);
+       if (IS_ERR(hw))
+               return PTR_ERR(hw);
+
+       hws[num++] = hw;
+       hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
+
+       snprintf(clk_name, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);
+       snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
+
+       /*
+        * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
+        * on the way. Don't let it set parent.
+        */
+       hw = clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2);
+       if (IS_ERR(hw))
+               return PTR_ERR(hw);
+
+       hws[num++] = hw;
+
+       snprintf(clk_name, 32, "dsi%dpll", pll_14nm->id);
+       snprintf(parent, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);
+
+       /* DSI pixel clock = VCO_CLK / N1 / 2 / N2
+        * This is the output of N2 post-divider, bits 4-7 in
+        * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
+        */
+       hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, 0, 4);
+       if (IS_ERR(hw))
+               return PTR_ERR(hw);
+
+       hws[num++] = hw;
+       hw_data->hws[DSI_PIXEL_PLL_CLK] = hw;
+
+       pll_14nm->num_hws = num;
+
+       hw_data->num = NUM_PROVIDED_CLKS;
+       pll_14nm->hw_data = hw_data;
+
+       ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
+                                    pll_14nm->hw_data);
+       if (ret) {
+               dev_err(dev, "failed to register clk provider: %d\n", ret);
+               return ret;
+       }
+
+       return 0;
+}
+
+struct msm_dsi_pll *msm_dsi_pll_14nm_init(struct platform_device *pdev, int id)
+{
+       struct dsi_pll_14nm *pll_14nm;
+       struct msm_dsi_pll *pll;
+       int ret;
+
+       if (!pdev)
+               return ERR_PTR(-ENODEV);
+
+       pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
+       if (!pll_14nm)
+               return ERR_PTR(-ENOMEM);
+
+       DBG("PLL%d", id);
+
+       pll_14nm->pdev = pdev;
+       pll_14nm->id = id;
+       pll_14nm_list[id] = pll_14nm;
+
+       pll_14nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
+       if (IS_ERR_OR_NULL(pll_14nm->phy_cmn_mmio)) {
+               dev_err(&pdev->dev, "failed to map CMN PHY base\n");
+               return ERR_PTR(-ENOMEM);
+       }
+
+       pll_14nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
+       if (IS_ERR_OR_NULL(pll_14nm->mmio)) {
+               dev_err(&pdev->dev, "failed to map PLL base\n");
+               return ERR_PTR(-ENOMEM);
+       }
+
+       spin_lock_init(&pll_14nm->postdiv_lock);
+
+       pll = &pll_14nm->base;
+       pll->min_rate = VCO_MIN_RATE;
+       pll->max_rate = VCO_MAX_RATE;
+       pll->get_provider = dsi_pll_14nm_get_provider;
+       pll->destroy = dsi_pll_14nm_destroy;
+       pll->disable_seq = dsi_pll_14nm_disable_seq;
+       pll->save_state = dsi_pll_14nm_save_state;
+       pll->restore_state = dsi_pll_14nm_restore_state;
+       pll->set_usecase = dsi_pll_14nm_set_usecase;
+
+       pll_14nm->vco_delay = 1;
+
+       pll->en_seq_cnt = 1;
+       pll->enable_seqs[0] = dsi_pll_14nm_enable_seq;
+
+       ret = pll_14nm_register(pll_14nm);
+       if (ret) {
+               dev_err(&pdev->dev, "failed to register PLL: %d\n", ret);
+               return ERR_PTR(ret);
+       }
+
+       return pll;
+}