unaware of the difference. We only need to make sure that no one ever tries to
map those pages from the CPU side.
-HMM provides a set of helpers to register and hotplug device memory as a new
-region needing a struct page. This is offered through a very simple API::
-
- struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
- struct device *device,
- unsigned long size);
- void hmm_devmem_remove(struct hmm_devmem *devmem);
-
-The hmm_devmem_ops is where most of the important things are::
-
- struct hmm_devmem_ops {
- void (*free)(struct hmm_devmem *devmem, struct page *page);
- int (*fault)(struct hmm_devmem *devmem,
- struct vm_area_struct *vma,
- unsigned long addr,
- struct page *page,
- unsigned flags,
- pmd_t *pmdp);
- };
-
-The first callback (free()) happens when the last reference on a device page is
-dropped. This means the device page is now free and no longer used by anyone.
-The second callback happens whenever the CPU tries to access a device page
-which it cannot do. This second callback must trigger a migration back to
-system memory.
-
Migration to and from device memory
===================================
#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
#if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
-struct hmm_devmem;
-
-/*
- * struct hmm_devmem_ops - callback for ZONE_DEVICE memory events
- *
- * @free: call when refcount on page reach 1 and thus is no longer use
- * @fault: call when there is a page fault to unaddressable memory
- *
- * Both callback happens from page_free() and page_fault() callback of struct
- * dev_pagemap respectively. See include/linux/memremap.h for more details on
- * those.
- *
- * The hmm_devmem_ops callback are just here to provide a coherent and
- * uniq API to device driver and device driver should not register their
- * own page_free() or page_fault() but rely on the hmm_devmem_ops call-
- * back.
- */
-struct hmm_devmem_ops {
- /*
- * free() - free a device page
- * @devmem: device memory structure (see struct hmm_devmem)
- * @page: pointer to struct page being freed
- *
- * Call back occurs whenever a device page refcount reach 1 which
- * means that no one is holding any reference on the page anymore
- * (ZONE_DEVICE page have an elevated refcount of 1 as default so
- * that they are not release to the general page allocator).
- *
- * Note that callback has exclusive ownership of the page (as no
- * one is holding any reference).
- */
- void (*free)(struct hmm_devmem *devmem, struct page *page);
- /*
- * fault() - CPU page fault or get user page (GUP)
- * @devmem: device memory structure (see struct hmm_devmem)
- * @vma: virtual memory area containing the virtual address
- * @addr: virtual address that faulted or for which there is a GUP
- * @page: pointer to struct page backing virtual address (unreliable)
- * @flags: FAULT_FLAG_* (see include/linux/mm.h)
- * @pmdp: page middle directory
- * Returns: VM_FAULT_MINOR/MAJOR on success or one of VM_FAULT_ERROR
- * on error
- *
- * The callback occurs whenever there is a CPU page fault or GUP on a
- * virtual address. This means that the device driver must migrate the
- * page back to regular memory (CPU accessible).
- *
- * The device driver is free to migrate more than one page from the
- * fault() callback as an optimization. However if device decide to
- * migrate more than one page it must always priotirize the faulting
- * address over the others.
- *
- * The struct page pointer is only given as an hint to allow quick
- * lookup of internal device driver data. A concurrent migration
- * might have already free that page and the virtual address might
- * not longer be back by it. So it should not be modified by the
- * callback.
- *
- * Note that mmap semaphore is held in read mode at least when this
- * callback occurs, hence the vma is valid upon callback entry.
- */
- vm_fault_t (*fault)(struct hmm_devmem *devmem,
- struct vm_area_struct *vma,
- unsigned long addr,
- const struct page *page,
- unsigned int flags,
- pmd_t *pmdp);
-};
-
-/*
- * struct hmm_devmem - track device memory
- *
- * @completion: completion object for device memory
- * @pfn_first: first pfn for this resource (set by hmm_devmem_add())
- * @pfn_last: last pfn for this resource (set by hmm_devmem_add())
- * @resource: IO resource reserved for this chunk of memory
- * @pagemap: device page map for that chunk
- * @device: device to bind resource to
- * @ops: memory operations callback
- * @ref: per CPU refcount
- * @page_fault: callback when CPU fault on an unaddressable device page
- *
- * This an helper structure for device drivers that do not wish to implement
- * the gory details related to hotplugging new memoy and allocating struct
- * pages.
- *
- * Device drivers can directly use ZONE_DEVICE memory on their own if they
- * wish to do so.
- *
- * The page_fault() callback must migrate page back, from device memory to
- * system memory, so that the CPU can access it. This might fail for various
- * reasons (device issues, device have been unplugged, ...). When such error
- * conditions happen, the page_fault() callback must return VM_FAULT_SIGBUS and
- * set the CPU page table entry to "poisoned".
- *
- * Note that because memory cgroup charges are transferred to the device memory,
- * this should never fail due to memory restrictions. However, allocation
- * of a regular system page might still fail because we are out of memory. If
- * that happens, the page_fault() callback must return VM_FAULT_OOM.
- *
- * The page_fault() callback can also try to migrate back multiple pages in one
- * chunk, as an optimization. It must, however, prioritize the faulting address
- * over all the others.
- */
-
-struct hmm_devmem {
- struct completion completion;
- unsigned long pfn_first;
- unsigned long pfn_last;
- struct resource *resource;
- struct device *device;
- struct dev_pagemap pagemap;
- const struct hmm_devmem_ops *ops;
- struct percpu_ref ref;
-};
-
-/*
- * To add (hotplug) device memory, HMM assumes that there is no real resource
- * that reserves a range in the physical address space (this is intended to be
- * use by unaddressable device memory). It will reserve a physical range big
- * enough and allocate struct page for it.
- *
- * The device driver can wrap the hmm_devmem struct inside a private device
- * driver struct.
- */
-struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
- struct device *device,
- unsigned long size);
-
/*
* hmm_devmem_page_set_drvdata - set per-page driver data field
*
}
EXPORT_SYMBOL(hmm_range_dma_unmap);
#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
-
-
-#if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
-static void hmm_devmem_ref_release(struct percpu_ref *ref)
-{
- struct hmm_devmem *devmem;
-
- devmem = container_of(ref, struct hmm_devmem, ref);
- complete(&devmem->completion);
-}
-
-static void hmm_devmem_ref_exit(struct dev_pagemap *pgmap)
-{
- struct hmm_devmem *devmem;
-
- devmem = container_of(pgmap, struct hmm_devmem, pagemap);
- wait_for_completion(&devmem->completion);
- percpu_ref_exit(pgmap->ref);
-}
-
-static void hmm_devmem_ref_kill(struct dev_pagemap *pgmap)
-{
- percpu_ref_kill(pgmap->ref);
-}
-
-static vm_fault_t hmm_devmem_migrate_to_ram(struct vm_fault *vmf)
-{
- struct hmm_devmem *devmem =
- container_of(vmf->page->pgmap, struct hmm_devmem, pagemap);
-
- return devmem->ops->fault(devmem, vmf->vma, vmf->address, vmf->page,
- vmf->flags, vmf->pmd);
-}
-
-static void hmm_devmem_free(struct page *page)
-{
- struct hmm_devmem *devmem =
- container_of(page->pgmap, struct hmm_devmem, pagemap);
-
- devmem->ops->free(devmem, page);
-}
-
-static const struct dev_pagemap_ops hmm_pagemap_ops = {
- .page_free = hmm_devmem_free,
- .kill = hmm_devmem_ref_kill,
- .cleanup = hmm_devmem_ref_exit,
- .migrate_to_ram = hmm_devmem_migrate_to_ram,
-};
-
-/*
- * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
- *
- * @ops: memory event device driver callback (see struct hmm_devmem_ops)
- * @device: device struct to bind the resource too
- * @size: size in bytes of the device memory to add
- * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
- *
- * This function first finds an empty range of physical address big enough to
- * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
- * in turn allocates struct pages. It does not do anything beyond that; all
- * events affecting the memory will go through the various callbacks provided
- * by hmm_devmem_ops struct.
- *
- * Device driver should call this function during device initialization and
- * is then responsible of memory management. HMM only provides helpers.
- */
-struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
- struct device *device,
- unsigned long size)
-{
- struct hmm_devmem *devmem;
- void *result;
- int ret;
-
- devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
- if (!devmem)
- return ERR_PTR(-ENOMEM);
-
- init_completion(&devmem->completion);
- devmem->pfn_first = -1UL;
- devmem->pfn_last = -1UL;
- devmem->resource = NULL;
- devmem->device = device;
- devmem->ops = ops;
-
- ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
- 0, GFP_KERNEL);
- if (ret)
- return ERR_PTR(ret);
-
- devmem->resource = devm_request_free_mem_region(device, &iomem_resource,
- size);
- if (IS_ERR(devmem->resource))
- return ERR_CAST(devmem->resource);
- devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
- devmem->pfn_last = devmem->pfn_first +
- (resource_size(devmem->resource) >> PAGE_SHIFT);
-
- devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
- devmem->pagemap.res = *devmem->resource;
- devmem->pagemap.ops = &hmm_pagemap_ops;
- devmem->pagemap.ref = &devmem->ref;
-
- result = devm_memremap_pages(devmem->device, &devmem->pagemap);
- if (IS_ERR(result))
- return result;
- return devmem;
-}
-EXPORT_SYMBOL_GPL(hmm_devmem_add);
-#endif /* CONFIG_DEVICE_PRIVATE */