/*
  * The timer bases:
  *
- * Note: If we want to add new timer bases, we have to skip the two
- * clock ids captured by the cpu-timers. We do this by holding empty
- * entries rather than doing math adjustment of the clock ids.
- * This ensures that we capture erroneous accesses to these clock ids
- * rather than moving them into the range of valid clock id's.
+ * There are more clockids then hrtimer bases. Thus, we index
+ * into the timer bases by the hrtimer_base_type enum. When trying
+ * to reach a base using a clockid, hrtimer_clockid_to_base()
+ * is used to convert from clockid to the proper hrtimer_base_type.
  */
 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
 {
        }
 };
 
+static int hrtimer_clock_to_base_table[MAX_CLOCKS];
+
+static inline int hrtimer_clockid_to_base(clockid_t clock_id)
+{
+       return hrtimer_clock_to_base_table[clock_id];
+}
+
+
 /*
  * Get the coarse grained time at the softirq based on xtime and
  * wall_to_monotonic.
 
        xtim = timespec_to_ktime(xts);
        tomono = timespec_to_ktime(tom);
-       base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
-       base->clock_base[CLOCK_MONOTONIC].softirq_time =
+       base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
+       base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time =
                ktime_add(xtim, tomono);
 }
 
        struct hrtimer_cpu_base *new_cpu_base;
        int this_cpu = smp_processor_id();
        int cpu = hrtimer_get_target(this_cpu, pinned);
+       int basenum = hrtimer_clockid_to_base(base->index);
 
 again:
        new_cpu_base = &per_cpu(hrtimer_bases, cpu);
-       new_base = &new_cpu_base->clock_base[base->index];
+       new_base = &new_cpu_base->clock_base[basenum];
 
        if (base != new_base) {
                /*
 
        /* Adjust CLOCK_REALTIME offset */
        raw_spin_lock(&base->lock);
-       base->clock_base[CLOCK_REALTIME].offset =
+       base->clock_base[HRTIMER_BASE_REALTIME].offset =
                timespec_to_ktime(realtime_offset);
 
        hrtimer_force_reprogram(base, 0);
                return 0;
        }
        base->hres_active = 1;
-       base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
-       base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
+       base->clock_base[HRTIMER_BASE_REALTIME].resolution = KTIME_HIGH_RES;
+       base->clock_base[HRTIMER_BASE_MONOTONIC].resolution = KTIME_HIGH_RES;
 
        tick_setup_sched_timer();
 
                           enum hrtimer_mode mode)
 {
        struct hrtimer_cpu_base *cpu_base;
+       int base;
 
        memset(timer, 0, sizeof(struct hrtimer));
 
        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
                clock_id = CLOCK_MONOTONIC;
 
-       timer->base = &cpu_base->clock_base[clock_id];
+       base = hrtimer_clockid_to_base(clock_id);
+       timer->base = &cpu_base->clock_base[base];
        hrtimer_init_timer_hres(timer);
        timerqueue_init(&timer->node);
 
 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
 {
        struct hrtimer_cpu_base *cpu_base;
+       int base = hrtimer_clockid_to_base(which_clock);
 
        cpu_base = &__raw_get_cpu_var(hrtimer_bases);
-       *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
+       *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
 
        return 0;
 }
 
 void __init hrtimers_init(void)
 {
+       hrtimer_clock_to_base_table[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME;
+       hrtimer_clock_to_base_table[CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC;
+
        hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
                          (void *)(long)smp_processor_id());
        register_cpu_notifier(&hrtimers_nb);