* between user contexts and software interrupt processing, whereas the
  * mini-semaphore synchronizes multiple users amongst themselves.
  */
-struct sock_iocb;
 typedef struct {
        spinlock_t              slock;
-       struct sock_iocb        *owner;
+       int                     owned;
        wait_queue_head_t       wq;
        /*
         * We express the mutex-alike socket_lock semantics
  * Since ~2.3.5 it is also exclusive sleep lock serializing
  * accesses from user process context.
  */
-#define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
+#define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
 
 /*
  * Macro so as to not evaluate some arguments when
  */
 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)      \
 do {                                                                   \
-       sk->sk_lock.owner = NULL;                                       \
+       sk->sk_lock.owned = 0;                                  \
        init_waitqueue_head(&sk->sk_lock.wq);                           \
        spin_lock_init(&(sk)->sk_lock.slock);                           \
        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
 
 {
        might_sleep();
        spin_lock_bh(&sk->sk_lock.slock);
-       if (sk->sk_lock.owner)
+       if (sk->sk_lock.owned)
                __lock_sock(sk);
-       sk->sk_lock.owner = (void *)1;
+       sk->sk_lock.owned = 1;
        spin_unlock(&sk->sk_lock.slock);
        /*
         * The sk_lock has mutex_lock() semantics here:
        spin_lock_bh(&sk->sk_lock.slock);
        if (sk->sk_backlog.tail)
                __release_sock(sk);
-       sk->sk_lock.owner = NULL;
+       sk->sk_lock.owned = 0;
        if (waitqueue_active(&sk->sk_lock.wq))
                wake_up(&sk->sk_lock.wq);
        spin_unlock_bh(&sk->sk_lock.slock);