2    Modifying System Parameters
 
   3    Per-Process Parameters
-  3.1  /proc/<pid>/oom_adj - Adjust the oom-killer score
+  3.1  /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj - Adjust the oom-killer
+                                                               score
   3.2  /proc/<pid>/oom_score - Display current oom-killer score
   3.3  /proc/<pid>/io - Display the IO accounting fields
   3.4  /proc/<pid>/coredump_filter - Core dump filtering settings
 CHAPTER 3: PER-PROCESS PARAMETERS
 ------------------------------------------------------------------------------
 
-3.1 /proc/<pid>/oom_adj - Adjust the oom-killer score
-------------------------------------------------------
-
-This file can be used to adjust the score used to select which processes
-should be killed in an  out-of-memory  situation.  Giving it a high score will
-increase the likelihood of this process being killed by the oom-killer.  Valid
-values are in the range -16 to +15, plus the special value -17, which disables
-oom-killing altogether for this process.
-
-The process to be killed in an out-of-memory situation is selected among all others
-based on its badness score. This value equals the original memory size of the process
-and is then updated according to its CPU time (utime + stime) and the
-run time (uptime - start time). The longer it runs the smaller is the score.
-Badness score is divided by the square root of the CPU time and then by
-the double square root of the run time.
-
-Swapped out tasks are killed first. Half of each child's memory size is added to
-the parent's score if they do not share the same memory. Thus forking servers
-are the prime candidates to be killed. Having only one 'hungry' child will make
-parent less preferable than the child.
-
-/proc/<pid>/oom_score shows process' current badness score.
-
-The following heuristics are then applied:
- * if the task was reniced, its score doubles
- * superuser or direct hardware access tasks (CAP_SYS_ADMIN, CAP_SYS_RESOURCE
-       or CAP_SYS_RAWIO) have their score divided by 4
- * if oom condition happened in one cpuset and checked process does not belong
-       to it, its score is divided by 8
- * the resulting score is multiplied by two to the power of oom_adj, i.e.
-       points <<= oom_adj when it is positive and
-       points >>= -(oom_adj) otherwise
-
-The task with the highest badness score is then selected and its children
-are killed, process itself will be killed in an OOM situation when it does
-not have children or some of them disabled oom like described above.
+3.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj- Adjust the oom-killer score
+--------------------------------------------------------------------------------
+
+These file can be used to adjust the badness heuristic used to select which
+process gets killed in out of memory conditions.
+
+The badness heuristic assigns a value to each candidate task ranging from 0
+(never kill) to 1000 (always kill) to determine which process is targeted.  The
+units are roughly a proportion along that range of allowed memory the process
+may allocate from based on an estimation of its current memory and swap use.
+For example, if a task is using all allowed memory, its badness score will be
+1000.  If it is using half of its allowed memory, its score will be 500.
+
+There is an additional factor included in the badness score: root
+processes are given 3% extra memory over other tasks.
+
+The amount of "allowed" memory depends on the context in which the oom killer
+was called.  If it is due to the memory assigned to the allocating task's cpuset
+being exhausted, the allowed memory represents the set of mems assigned to that
+cpuset.  If it is due to a mempolicy's node(s) being exhausted, the allowed
+memory represents the set of mempolicy nodes.  If it is due to a memory
+limit (or swap limit) being reached, the allowed memory is that configured
+limit.  Finally, if it is due to the entire system being out of memory, the
+allowed memory represents all allocatable resources.
+
+The value of /proc/<pid>/oom_score_adj is added to the badness score before it
+is used to determine which task to kill.  Acceptable values range from -1000
+(OOM_SCORE_ADJ_MIN) to +1000 (OOM_SCORE_ADJ_MAX).  This allows userspace to
+polarize the preference for oom killing either by always preferring a certain
+task or completely disabling it.  The lowest possible value, -1000, is
+equivalent to disabling oom killing entirely for that task since it will always
+report a badness score of 0.
+
+Consequently, it is very simple for userspace to define the amount of memory to
+consider for each task.  Setting a /proc/<pid>/oom_score_adj value of +500, for
+example, is roughly equivalent to allowing the remainder of tasks sharing the
+same system, cpuset, mempolicy, or memory controller resources to use at least
+50% more memory.  A value of -500, on the other hand, would be roughly
+equivalent to discounting 50% of the task's allowed memory from being considered
+as scoring against the task.
+
+For backwards compatibility with previous kernels, /proc/<pid>/oom_adj may also
+be used to tune the badness score.  Its acceptable values range from -16
+(OOM_ADJUST_MIN) to +15 (OOM_ADJUST_MAX) and a special value of -17
+(OOM_DISABLE) to disable oom killing entirely for that task.  Its value is
+scaled linearly with /proc/<pid>/oom_score_adj.
+
+Writing to /proc/<pid>/oom_score_adj or /proc/<pid>/oom_adj will change the
+other with its scaled value.
+
+Caveat: when a parent task is selected, the oom killer will sacrifice any first
+generation children with seperate address spaces instead, if possible.  This
+avoids servers and important system daemons from being killed and loses the
+minimal amount of work.
+
 
 3.2 /proc/<pid>/oom_score - Display current oom-killer score
 -------------------------------------------------------------
 
 #include <linux/namei.h>
 #include <linux/mnt_namespace.h>
 #include <linux/mm.h>
+#include <linux/swap.h>
 #include <linux/rcupdate.h>
 #include <linux/kallsyms.h>
 #include <linux/stacktrace.h>
 static int proc_oom_score(struct task_struct *task, char *buffer)
 {
        unsigned long points = 0;
-       struct timespec uptime;
 
-       do_posix_clock_monotonic_gettime(&uptime);
        read_lock(&tasklist_lock);
        if (pid_alive(task))
-               points = badness(task, NULL, NULL, uptime.tv_sec);
+               points = oom_badness(task, NULL, NULL,
+                                       totalram_pages + total_swap_pages);
        read_unlock(&tasklist_lock);
        return sprintf(buffer, "%lu\n", points);
 }
        }
 
        task->signal->oom_adj = oom_adjust;
-
+       /*
+        * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
+        * value is always attainable.
+        */
+       if (task->signal->oom_adj == OOM_ADJUST_MAX)
+               task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
+       else
+               task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
+                                                               -OOM_DISABLE;
        unlock_task_sighand(task, &flags);
        put_task_struct(task);
 
        .llseek         = generic_file_llseek,
 };
 
+static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
+                                       size_t count, loff_t *ppos)
+{
+       struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
+       char buffer[PROC_NUMBUF];
+       int oom_score_adj = OOM_SCORE_ADJ_MIN;
+       unsigned long flags;
+       size_t len;
+
+       if (!task)
+               return -ESRCH;
+       if (lock_task_sighand(task, &flags)) {
+               oom_score_adj = task->signal->oom_score_adj;
+               unlock_task_sighand(task, &flags);
+       }
+       put_task_struct(task);
+       len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
+       return simple_read_from_buffer(buf, count, ppos, buffer, len);
+}
+
+static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
+                                       size_t count, loff_t *ppos)
+{
+       struct task_struct *task;
+       char buffer[PROC_NUMBUF];
+       unsigned long flags;
+       long oom_score_adj;
+       int err;
+
+       memset(buffer, 0, sizeof(buffer));
+       if (count > sizeof(buffer) - 1)
+               count = sizeof(buffer) - 1;
+       if (copy_from_user(buffer, buf, count))
+               return -EFAULT;
+
+       err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
+       if (err)
+               return -EINVAL;
+       if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
+                       oom_score_adj > OOM_SCORE_ADJ_MAX)
+               return -EINVAL;
+
+       task = get_proc_task(file->f_path.dentry->d_inode);
+       if (!task)
+               return -ESRCH;
+       if (!lock_task_sighand(task, &flags)) {
+               put_task_struct(task);
+               return -ESRCH;
+       }
+       if (oom_score_adj < task->signal->oom_score_adj &&
+                       !capable(CAP_SYS_RESOURCE)) {
+               unlock_task_sighand(task, &flags);
+               put_task_struct(task);
+               return -EACCES;
+       }
+
+       task->signal->oom_score_adj = oom_score_adj;
+       /*
+        * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
+        * always attainable.
+        */
+       if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
+               task->signal->oom_adj = OOM_DISABLE;
+       else
+               task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
+                                                       OOM_SCORE_ADJ_MAX;
+       unlock_task_sighand(task, &flags);
+       put_task_struct(task);
+       return count;
+}
+
+static const struct file_operations proc_oom_score_adj_operations = {
+       .read           = oom_score_adj_read,
+       .write          = oom_score_adj_write,
+};
+
 #ifdef CONFIG_AUDITSYSCALL
 #define TMPBUFLEN 21
 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
 #endif
        INF("oom_score",  S_IRUGO, proc_oom_score),
        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
+       REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
 #ifdef CONFIG_AUDITSYSCALL
        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
 #endif
        INF("oom_score", S_IRUGO, proc_oom_score),
        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
+       REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
 #ifdef CONFIG_AUDITSYSCALL
        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
        REG("sessionid",  S_IRUSR, proc_sessionid_operations),
 
  *  Copyright (C)  1998,2000  Rik van Riel
  *     Thanks go out to Claus Fischer for some serious inspiration and
  *     for goading me into coding this file...
+ *  Copyright (C)  2010  Google, Inc.
+ *     Rewritten by David Rientjes
  *
  *  The routines in this file are used to kill a process when
  *  we're seriously out of memory. This gets called from __alloc_pages()
 int sysctl_oom_kill_allocating_task;
 int sysctl_oom_dump_tasks = 1;
 static DEFINE_SPINLOCK(zone_scan_lock);
-/* #define DEBUG */
 
 #ifdef CONFIG_NUMA
 /**
 }
 
 /**
- * badness - calculate a numeric value for how bad this task has been
+ * oom_badness - heuristic function to determine which candidate task to kill
  * @p: task struct of which task we should calculate
- * @uptime: current uptime in seconds
+ * @totalpages: total present RAM allowed for page allocation
  *
- * The formula used is relatively simple and documented inline in the
- * function. The main rationale is that we want to select a good task
- * to kill when we run out of memory.
- *
- * Good in this context means that:
- * 1) we lose the minimum amount of work done
- * 2) we recover a large amount of memory
- * 3) we don't kill anything innocent of eating tons of memory
- * 4) we want to kill the minimum amount of processes (one)
- * 5) we try to kill the process the user expects us to kill, this
- *    algorithm has been meticulously tuned to meet the principle
- *    of least surprise ... (be careful when you change it)
+ * The heuristic for determining which task to kill is made to be as simple and
+ * predictable as possible.  The goal is to return the highest value for the
+ * task consuming the most memory to avoid subsequent oom failures.
  */
-unsigned long badness(struct task_struct *p, struct mem_cgroup *mem,
-                     const nodemask_t *nodemask, unsigned long uptime)
+unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
+                     const nodemask_t *nodemask, unsigned long totalpages)
 {
-       unsigned long points, cpu_time, run_time;
-       struct task_struct *child;
-       struct task_struct *c, *t;
-       int oom_adj = p->signal->oom_adj;
-       struct task_cputime task_time;
-       unsigned long utime;
-       unsigned long stime;
+       int points;
 
        if (oom_unkillable_task(p, mem, nodemask))
                return 0;
-       if (oom_adj == OOM_DISABLE)
-               return 0;
 
        p = find_lock_task_mm(p);
        if (!p)
                return 0;
 
        /*
-        * The memory size of the process is the basis for the badness.
-        */
-       points = p->mm->total_vm;
-       task_unlock(p);
-
-       /*
-        * swapoff can easily use up all memory, so kill those first.
-        */
-       if (p->flags & PF_OOM_ORIGIN)
-               return ULONG_MAX;
-
-       /*
-        * Processes which fork a lot of child processes are likely
-        * a good choice. We add half the vmsize of the children if they
-        * have an own mm. This prevents forking servers to flood the
-        * machine with an endless amount of children. In case a single
-        * child is eating the vast majority of memory, adding only half
-        * to the parents will make the child our kill candidate of choice.
+        * Shortcut check for OOM_SCORE_ADJ_MIN so the entire heuristic doesn't
+        * need to be executed for something that cannot be killed.
         */
-       t = p;
-       do {
-               list_for_each_entry(c, &t->children, sibling) {
-                       child = find_lock_task_mm(c);
-                       if (child) {
-                               if (child->mm != p->mm)
-                                       points += child->mm->total_vm/2 + 1;
-                               task_unlock(child);
-                       }
-               }
-       } while_each_thread(p, t);
+       if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
+               task_unlock(p);
+               return 0;
+       }
 
        /*
-        * CPU time is in tens of seconds and run time is in thousands
-         * of seconds. There is no particular reason for this other than
-         * that it turned out to work very well in practice.
+        * When the PF_OOM_ORIGIN bit is set, it indicates the task should have
+        * priority for oom killing.
         */
-       thread_group_cputime(p, &task_time);
-       utime = cputime_to_jiffies(task_time.utime);
-       stime = cputime_to_jiffies(task_time.stime);
-       cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
-
-
-       if (uptime >= p->start_time.tv_sec)
-               run_time = (uptime - p->start_time.tv_sec) >> 10;
-       else
-               run_time = 0;
-
-       if (cpu_time)
-               points /= int_sqrt(cpu_time);
-       if (run_time)
-               points /= int_sqrt(int_sqrt(run_time));
+       if (p->flags & PF_OOM_ORIGIN) {
+               task_unlock(p);
+               return 1000;
+       }
 
        /*
-        * Niced processes are most likely less important, so double
-        * their badness points.
+        * The memory controller may have a limit of 0 bytes, so avoid a divide
+        * by zero, if necessary.
         */
-       if (task_nice(p) > 0)
-               points *= 2;
+       if (!totalpages)
+               totalpages = 1;
 
        /*
-        * Superuser processes are usually more important, so we make it
-        * less likely that we kill those.
+        * The baseline for the badness score is the proportion of RAM that each
+        * task's rss and swap space use.
         */
-       if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
-           has_capability_noaudit(p, CAP_SYS_RESOURCE))
-               points /= 4;
+       points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 /
+                       totalpages;
+       task_unlock(p);
 
        /*
-        * We don't want to kill a process with direct hardware access.
-        * Not only could that mess up the hardware, but usually users
-        * tend to only have this flag set on applications they think
-        * of as important.
+        * Root processes get 3% bonus, just like the __vm_enough_memory()
+        * implementation used by LSMs.
         */
-       if (has_capability_noaudit(p, CAP_SYS_RAWIO))
-               points /= 4;
+       if (has_capability_noaudit(p, CAP_SYS_ADMIN))
+               points -= 30;
 
        /*
-        * Adjust the score by oom_adj.
+        * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
+        * either completely disable oom killing or always prefer a certain
+        * task.
         */
-       if (oom_adj) {
-               if (oom_adj > 0) {
-                       if (!points)
-                               points = 1;
-                       points <<= oom_adj;
-               } else
-                       points >>= -(oom_adj);
-       }
+       points += p->signal->oom_score_adj;
 
-#ifdef DEBUG
-       printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
-       p->pid, p->comm, points);
-#endif
-       return points;
+       if (points < 0)
+               return 0;
+       return (points < 1000) ? points : 1000;
 }
 
 /*
  */
 #ifdef CONFIG_NUMA
 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
-                                   gfp_t gfp_mask, nodemask_t *nodemask)
+                               gfp_t gfp_mask, nodemask_t *nodemask,
+                               unsigned long *totalpages)
 {
        struct zone *zone;
        struct zoneref *z;
        enum zone_type high_zoneidx = gfp_zone(gfp_mask);
+       bool cpuset_limited = false;
+       int nid;
 
+       /* Default to all available memory */
+       *totalpages = totalram_pages + total_swap_pages;
+
+       if (!zonelist)
+               return CONSTRAINT_NONE;
        /*
         * Reach here only when __GFP_NOFAIL is used. So, we should avoid
         * to kill current.We have to random task kill in this case.
                return CONSTRAINT_NONE;
 
        /*
-        * The nodemask here is a nodemask passed to alloc_pages(). Now,
-        * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy
-        * feature. mempolicy is an only user of nodemask here.
-        * check mempolicy's nodemask contains all N_HIGH_MEMORY
+        * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
+        * the page allocator means a mempolicy is in effect.  Cpuset policy
+        * is enforced in get_page_from_freelist().
         */
-       if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask))
+       if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
+               *totalpages = total_swap_pages;
+               for_each_node_mask(nid, *nodemask)
+                       *totalpages += node_spanned_pages(nid);
                return CONSTRAINT_MEMORY_POLICY;
+       }
 
        /* Check this allocation failure is caused by cpuset's wall function */
        for_each_zone_zonelist_nodemask(zone, z, zonelist,
                        high_zoneidx, nodemask)
                if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
-                       return CONSTRAINT_CPUSET;
+                       cpuset_limited = true;
 
+       if (cpuset_limited) {
+               *totalpages = total_swap_pages;
+               for_each_node_mask(nid, cpuset_current_mems_allowed)
+                       *totalpages += node_spanned_pages(nid);
+               return CONSTRAINT_CPUSET;
+       }
        return CONSTRAINT_NONE;
 }
 #else
 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
-                               gfp_t gfp_mask, nodemask_t *nodemask)
+                               gfp_t gfp_mask, nodemask_t *nodemask,
+                               unsigned long *totalpages)
 {
+       *totalpages = totalram_pages + total_swap_pages;
        return CONSTRAINT_NONE;
 }
 #endif
  *
  * (not docbooked, we don't want this one cluttering up the manual)
  */
-static struct task_struct *select_bad_process(unsigned long *ppoints,
-               struct mem_cgroup *mem, const nodemask_t *nodemask)
+static struct task_struct *select_bad_process(unsigned int *ppoints,
+               unsigned long totalpages, struct mem_cgroup *mem,
+               const nodemask_t *nodemask)
 {
        struct task_struct *p;
        struct task_struct *chosen = NULL;
-       struct timespec uptime;
        *ppoints = 0;
 
-       do_posix_clock_monotonic_gettime(&uptime);
        for_each_process(p) {
-               unsigned long points;
+               unsigned int points;
 
                if (oom_unkillable_task(p, mem, nodemask))
                        continue;
                                return ERR_PTR(-1UL);
 
                        chosen = p;
-                       *ppoints = ULONG_MAX;
+                       *ppoints = 1000;
                }
 
-               points = badness(p, mem, nodemask, uptime.tv_sec);
-               if (points > *ppoints || !chosen) {
+               points = oom_badness(p, mem, nodemask, totalpages);
+               if (points > *ppoints) {
                        chosen = p;
                        *ppoints = points;
                }
  *
  * Dumps the current memory state of all system tasks, excluding kernel threads.
  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
- * score, and name.
+ * value, oom_score_adj value, and name.
  *
  * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
  * shown.
        struct task_struct *p;
        struct task_struct *task;
 
-       printk(KERN_INFO "[ pid ]   uid  tgid total_vm      rss cpu oom_adj "
-              "name\n");
+       pr_info("[ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name\n");
        for_each_process(p) {
                if (p->flags & PF_KTHREAD)
                        continue;
                        continue;
                }
 
-               printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3u     %3d %s\n",
-                      task->pid, __task_cred(task)->uid, task->tgid,
-                      task->mm->total_vm, get_mm_rss(task->mm),
-                      task_cpu(task), task->signal->oom_adj, task->comm);
+               pr_info("[%5d] %5d %5d %8lu %8lu %3u     %3d         %5d %s\n",
+                       task->pid, __task_cred(task)->uid, task->tgid,
+                       task->mm->total_vm, get_mm_rss(task->mm),
+                       task_cpu(task), task->signal->oom_adj,
+                       task->signal->oom_score_adj, task->comm);
                task_unlock(task);
        }
 }
 {
        task_lock(current);
        pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
-               "oom_adj=%d\n",
-               current->comm, gfp_mask, order, current->signal->oom_adj);
+               "oom_adj=%d, oom_score_adj=%d\n",
+               current->comm, gfp_mask, order, current->signal->oom_adj,
+               current->signal->oom_score_adj);
        cpuset_print_task_mems_allowed(current);
        task_unlock(current);
        dump_stack();
 #undef K
 
 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
-                           unsigned long points, struct mem_cgroup *mem,
-                           nodemask_t *nodemask, const char *message)
+                           unsigned int points, unsigned long totalpages,
+                           struct mem_cgroup *mem, nodemask_t *nodemask,
+                           const char *message)
 {
        struct task_struct *victim = p;
        struct task_struct *child;
        struct task_struct *t = p;
-       unsigned long victim_points = 0;
-       struct timespec uptime;
+       unsigned int victim_points = 0;
 
        if (printk_ratelimit())
                dump_header(p, gfp_mask, order, mem);
        }
 
        task_lock(p);
-       pr_err("%s: Kill process %d (%s) score %lu or sacrifice child\n",
+       pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
                message, task_pid_nr(p), p->comm, points);
        task_unlock(p);
 
         * parent.  This attempts to lose the minimal amount of work done while
         * still freeing memory.
         */
-       do_posix_clock_monotonic_gettime(&uptime);
        do {
                list_for_each_entry(child, &t->children, sibling) {
-                       unsigned long child_points;
+                       unsigned int child_points;
 
-                       /* badness() returns 0 if the thread is unkillable */
-                       child_points = badness(child, mem, nodemask,
-                                              uptime.tv_sec);
+                       /*
+                        * oom_badness() returns 0 if the thread is unkillable
+                        */
+                       child_points = oom_badness(child, mem, nodemask,
+                                                               totalpages);
                        if (child_points > victim_points) {
                                victim = child;
                                victim_points = child_points;
 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
 {
-       unsigned long points = 0;
+       unsigned long limit;
+       unsigned int points = 0;
        struct task_struct *p;
 
        check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0);
+       limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
        read_lock(&tasklist_lock);
 retry:
-       p = select_bad_process(&points, mem, NULL);
+       p = select_bad_process(&points, limit, mem, NULL);
        if (!p || PTR_ERR(p) == -1UL)
                goto out;
 
-       if (oom_kill_process(p, gfp_mask, 0, points, mem, NULL,
+       if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
                                "Memory cgroup out of memory"))
                goto retry;
 out:
                int order, nodemask_t *nodemask)
 {
        struct task_struct *p;
+       unsigned long totalpages;
        unsigned long freed = 0;
-       unsigned long points;
+       unsigned int points;
        enum oom_constraint constraint = CONSTRAINT_NONE;
 
        blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
         * Check if there were limitations on the allocation (only relevant for
         * NUMA) that may require different handling.
         */
-       if (zonelist)
-               constraint = constrained_alloc(zonelist, gfp_mask, nodemask);
+       constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
+                                               &totalpages);
        check_panic_on_oom(constraint, gfp_mask, order);
 
        read_lock(&tasklist_lock);
                 * non-zero, current could not be killed so we must fallback to
                 * the tasklist scan.
                 */
-               if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
-                               nodemask,
+               if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
+                               NULL, nodemask,
                                "Out of memory (oom_kill_allocating_task)"))
                        return;
        }
 
 retry:
-       p = select_bad_process(&points, NULL,
+       p = select_bad_process(&points, totalpages, NULL,
                        constraint == CONSTRAINT_MEMORY_POLICY ? nodemask :
                                                                 NULL);
        if (PTR_ERR(p) == -1UL)
                panic("Out of memory and no killable processes...\n");
        }
 
-       if (oom_kill_process(p, gfp_mask, order, points, NULL, nodemask,
-                            "Out of memory"))
+       if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
+                               nodemask, "Out of memory"))
                goto retry;
        read_unlock(&tasklist_lock);