* Limitations:
  * - The .apply callback doesn't complete the currently running period before
  *   reconfiguring the hardware.
- * - Each period starts with the inactive part.
  */
 
 #include <linux/clk.h>
        /* Calculate duty value */
        tmp = (unsigned long long)rate * state->duty_cycle;
        do_div(tmp, NSEC_PER_SEC);
-       duty = period - tmp;
+       duty = tmp;
 
        if (duty >= period)
                duty = period - 1;
        regmap_update_bits(jz4740->map, TCU_REG_TCSRc(pwm->hwpwm),
                           TCU_TCSR_PWM_SD, TCU_TCSR_PWM_SD);
 
-       /* Set polarity */
-       switch (state->polarity) {
-       case PWM_POLARITY_NORMAL:
+       /*
+        * Set polarity.
+        *
+        * The PWM starts in inactive state until the internal timer reaches the
+        * duty value, then becomes active until the timer reaches the period
+        * value. In theory, we should then use (period - duty) as the real duty
+        * value, as a high duty value would otherwise result in the PWM pin
+        * being inactive most of the time.
+        *
+        * Here, we don't do that, and instead invert the polarity of the PWM
+        * when it is active. This trick makes the PWM start with its active
+        * state instead of its inactive state.
+        */
+       if ((state->polarity == PWM_POLARITY_NORMAL) ^ state->enabled)
                regmap_update_bits(jz4740->map, TCU_REG_TCSRc(pwm->hwpwm),
                                   TCU_TCSR_PWM_INITL_HIGH, 0);
-               break;
-       case PWM_POLARITY_INVERSED:
+       else
                regmap_update_bits(jz4740->map, TCU_REG_TCSRc(pwm->hwpwm),
                                   TCU_TCSR_PWM_INITL_HIGH,
                                   TCU_TCSR_PWM_INITL_HIGH);
-               break;
-       }
 
        if (state->enabled)
                jz4740_pwm_enable(chip, pwm);