bool sign_extend;
 };
 
-/*
- * The in-kernel MMIO emulation code wants to use a copy of run->mmio,
- * which is an anonymous type. Use our own type instead.
- */
-struct kvm_exit_mmio {
-       phys_addr_t     phys_addr;
-       u8              data[8];
-       u32             len;
-       bool            is_write;
-       void            *private;
-};
-
-static inline void kvm_prepare_mmio(struct kvm_run *run,
-                                   struct kvm_exit_mmio *mmio)
-{
-       run->mmio.phys_addr     = mmio->phys_addr;
-       run->mmio.len           = mmio->len;
-       run->mmio.is_write      = mmio->is_write;
-       memcpy(run->mmio.data, mmio->data, mmio->len);
-       run->exit_reason        = KVM_EXIT_MMIO;
-}
-
 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run);
 int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
                 phys_addr_t fault_ipa);
 
        return 0;
 }
 
-static int decode_hsr(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
-                     struct kvm_exit_mmio *mmio)
+static int decode_hsr(struct kvm_vcpu *vcpu, bool *is_write, int *len)
 {
        unsigned long rt;
-       int len;
-       bool is_write, sign_extend;
+       int access_size;
+       bool sign_extend;
 
        if (kvm_vcpu_dabt_isextabt(vcpu)) {
                /* cache operation on I/O addr, tell guest unsupported */
                return 1;
        }
 
-       len = kvm_vcpu_dabt_get_as(vcpu);
-       if (unlikely(len < 0))
-               return len;
+       access_size = kvm_vcpu_dabt_get_as(vcpu);
+       if (unlikely(access_size < 0))
+               return access_size;
 
-       is_write = kvm_vcpu_dabt_iswrite(vcpu);
+       *is_write = kvm_vcpu_dabt_iswrite(vcpu);
        sign_extend = kvm_vcpu_dabt_issext(vcpu);
        rt = kvm_vcpu_dabt_get_rd(vcpu);
 
-       mmio->is_write = is_write;
-       mmio->phys_addr = fault_ipa;
-       mmio->len = len;
+       *len = access_size;
        vcpu->arch.mmio_decode.sign_extend = sign_extend;
        vcpu->arch.mmio_decode.rt = rt;
 
 int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
                 phys_addr_t fault_ipa)
 {
-       struct kvm_exit_mmio mmio;
        unsigned long data;
        unsigned long rt;
        int ret;
+       bool is_write;
+       int len;
+       u8 data_buf[8];
 
        /*
-        * Prepare MMIO operation. First stash it in a private
-        * structure that we can use for in-kernel emulation. If the
-        * kernel can't handle it, copy it into run->mmio and let user
-        * space do its magic.
+        * Prepare MMIO operation. First decode the syndrome data we get
+        * from the CPU. Then try if some in-kernel emulation feels
+        * responsible, otherwise let user space do its magic.
         */
-
        if (kvm_vcpu_dabt_isvalid(vcpu)) {
-               ret = decode_hsr(vcpu, fault_ipa, &mmio);
+               ret = decode_hsr(vcpu, &is_write, &len);
                if (ret)
                        return ret;
        } else {
 
        rt = vcpu->arch.mmio_decode.rt;
 
-       if (mmio.is_write) {
-               data = vcpu_data_guest_to_host(vcpu, *vcpu_reg(vcpu, rt),
-                                              mmio.len);
+       if (is_write) {
+               data = vcpu_data_guest_to_host(vcpu, *vcpu_reg(vcpu, rt), len);
+
+               trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, data);
+               mmio_write_buf(data_buf, len, data);
 
-               trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, mmio.len,
-                              fault_ipa, data);
-               mmio_write_buf(mmio.data, mmio.len, data);
+               ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+                                      data_buf);
        } else {
-               trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, mmio.len,
+               trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len,
                               fault_ipa, 0);
+
+               ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+                                     data_buf);
        }
 
-       if (vgic_handle_mmio(vcpu, run, &mmio))
+       /* Now prepare kvm_run for the potential return to userland. */
+       run->mmio.is_write      = is_write;
+       run->mmio.phys_addr     = fault_ipa;
+       run->mmio.len           = len;
+       memcpy(run->mmio.data, data_buf, len);
+
+       if (!ret) {
+               /* We handled the access successfully in the kernel. */
+               kvm_handle_mmio_return(vcpu, run);
                return 1;
+       }
 
-       kvm_prepare_mmio(run, &mmio);
+       run->exit_reason        = KVM_EXIT_MMIO;
        return 0;
 }
 
        bool sign_extend;
 };
 
-/*
- * The in-kernel MMIO emulation code wants to use a copy of run->mmio,
- * which is an anonymous type. Use our own type instead.
- */
-struct kvm_exit_mmio {
-       phys_addr_t     phys_addr;
-       u8              data[8];
-       u32             len;
-       bool            is_write;
-       void            *private;
-};
-
-static inline void kvm_prepare_mmio(struct kvm_run *run,
-                                   struct kvm_exit_mmio *mmio)
-{
-       run->mmio.phys_addr     = mmio->phys_addr;
-       run->mmio.len           = mmio->len;
-       run->mmio.is_write      = mmio->is_write;
-       memcpy(run->mmio.data, mmio->data, mmio->len);
-       run->exit_reason        = KVM_EXIT_MMIO;
-}
-
 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run);
 int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
                 phys_addr_t fault_ipa);
 
 };
 
 struct vgic_vm_ops {
-       bool    (*handle_mmio)(struct kvm_vcpu *, struct kvm_run *,
-                              struct kvm_exit_mmio *);
        bool    (*queue_sgi)(struct kvm_vcpu *, int irq);
        void    (*add_sgi_source)(struct kvm_vcpu *, int irq, int source);
        int     (*init_model)(struct kvm *);
 
 struct kvm;
 struct kvm_vcpu;
-struct kvm_run;
-struct kvm_exit_mmio;
 
 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write);
 int kvm_vgic_hyp_init(void);
 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg);
 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu);
-bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
-                     struct kvm_exit_mmio *mmio);
 
 #define irqchip_in_kernel(k)   (!!((k)->arch.vgic.in_kernel))
 #define vgic_initialized(k)    (!!((k)->arch.vgic.nr_cpus))
 
        {}
 };
 
-static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
-                               struct kvm_exit_mmio *mmio)
-{
-       unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base;
-
-       if (!is_in_range(mmio->phys_addr, mmio->len, base,
-                        KVM_VGIC_V2_DIST_SIZE))
-               return false;
-
-       /* GICv2 does not support accesses wider than 32 bits */
-       if (mmio->len > 4) {
-               kvm_inject_dabt(vcpu, mmio->phys_addr);
-               return true;
-       }
-
-       return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base);
-}
-
 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
 {
        struct kvm *kvm = vcpu->kvm;
 {
        struct vgic_dist *dist = &kvm->arch.vgic;
 
-       dist->vm_ops.handle_mmio = vgic_v2_handle_mmio;
        dist->vm_ops.queue_sgi = vgic_v2_queue_sgi;
        dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source;
        dist->vm_ops.init_model = vgic_v2_init_model;
        struct kvm_vcpu *vcpu, *tmp_vcpu;
        struct vgic_dist *vgic;
        struct kvm_exit_mmio mmio;
+       u32 data;
 
        offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
        cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
 
        mmio.len = 4;
        mmio.is_write = is_write;
+       mmio.data = &data;
        if (is_write)
                mmio_data_write(&mmio, ~0, *reg);
        switch (attr->group) {
 
        {},
 };
 
-/*
- * This function splits accesses between the distributor and the two
- * redistributor parts (private/SPI). As each redistributor is accessible
- * from any CPU, we have to determine the affected VCPU by taking the faulting
- * address into account. We then pass this VCPU to the handler function via
- * the private parameter.
- */
-#define SGI_BASE_OFFSET SZ_64K
-static bool vgic_v3_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
-                               struct kvm_exit_mmio *mmio)
-{
-       struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
-       unsigned long dbase = dist->vgic_dist_base;
-       unsigned long rdbase = dist->vgic_redist_base;
-       int nrcpus = atomic_read(&vcpu->kvm->online_vcpus);
-       int vcpu_id;
-
-       if (is_in_range(mmio->phys_addr, mmio->len, dbase, GIC_V3_DIST_SIZE)) {
-               return vgic_handle_mmio_range(vcpu, run, mmio,
-                                             vgic_v3_dist_ranges, dbase);
-       }
-
-       if (!is_in_range(mmio->phys_addr, mmio->len, rdbase,
-           GIC_V3_REDIST_SIZE * nrcpus))
-               return false;
-
-       vcpu_id = (mmio->phys_addr - rdbase) / GIC_V3_REDIST_SIZE;
-       rdbase += (vcpu_id * GIC_V3_REDIST_SIZE);
-       mmio->private = kvm_get_vcpu(vcpu->kvm, vcpu_id);
-
-       return vgic_handle_mmio_range(vcpu, run, mmio, vgic_redist_ranges,
-                                     rdbase);
-}
-
 static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq)
 {
        if (vgic_queue_irq(vcpu, 0, irq)) {
 {
        struct vgic_dist *dist = &kvm->arch.vgic;
 
-       dist->vm_ops.handle_mmio = vgic_v3_handle_mmio;
        dist->vm_ops.queue_sgi = vgic_v3_queue_sgi;
        dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source;
        dist->vm_ops.init_model = vgic_v3_init_model;
 
                               unsigned long offset,
                               const struct vgic_io_range *range)
 {
-       u32 *data32 = (void *)mmio->data;
        struct kvm_exit_mmio mmio32;
        bool ret;
 
        mmio32.private = mmio->private;
 
        mmio32.phys_addr = mmio->phys_addr + 4;
-       if (mmio->is_write)
-               *(u32 *)mmio32.data = data32[1];
+       mmio32.data = &((u32 *)mmio->data)[1];
        ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
-       if (!mmio->is_write)
-               data32[1] = *(u32 *)mmio32.data;
 
        mmio32.phys_addr = mmio->phys_addr;
-       if (mmio->is_write)
-               *(u32 *)mmio32.data = data32[0];
+       mmio32.data = &((u32 *)mmio->data)[0];
        ret |= range->handle_mmio(vcpu, &mmio32, offset);
-       if (!mmio->is_write)
-               data32[0] = *(u32 *)mmio32.data;
 
        return ret;
 }
 
-/**
- * vgic_handle_mmio_range - handle an in-kernel MMIO access
- * @vcpu:      pointer to the vcpu performing the access
- * @run:       pointer to the kvm_run structure
- * @mmio:      pointer to the data describing the access
- * @ranges:    array of MMIO ranges in a given region
- * @mmio_base: base address of that region
- *
- * returns true if the MMIO access could be performed
- */
-bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
-                           struct kvm_exit_mmio *mmio,
-                           const struct vgic_io_range *ranges,
-                           unsigned long mmio_base)
-{
-       const struct vgic_io_range *range;
-       struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
-       bool updated_state;
-       unsigned long offset;
-
-       offset = mmio->phys_addr - mmio_base;
-       range = vgic_find_range(ranges, mmio->len, offset);
-       if (unlikely(!range || !range->handle_mmio)) {
-               pr_warn("Unhandled access %d %08llx %d\n",
-                       mmio->is_write, mmio->phys_addr, mmio->len);
-               return false;
-       }
-
-       spin_lock(&vcpu->kvm->arch.vgic.lock);
-       offset -= range->base;
-       if (vgic_validate_access(dist, range, offset)) {
-               updated_state = call_range_handler(vcpu, mmio, offset, range);
-       } else {
-               if (!mmio->is_write)
-                       memset(mmio->data, 0, mmio->len);
-               updated_state = false;
-       }
-       spin_unlock(&vcpu->kvm->arch.vgic.lock);
-       kvm_prepare_mmio(run, mmio);
-       kvm_handle_mmio_return(vcpu, run);
-
-       if (updated_state)
-               vgic_kick_vcpus(vcpu->kvm);
-
-       return true;
-}
-
 /**
  * vgic_handle_mmio_access - handle an in-kernel MMIO access
  * This is called by the read/write KVM IO device wrappers below.
        mmio.phys_addr = addr;
        mmio.len = len;
        mmio.is_write = is_write;
-       if (is_write)
-               memcpy(mmio.data, val, len);
+       mmio.data = val;
        mmio.private = iodev->redist_vcpu;
 
        spin_lock(&dist->lock);
        offset -= range->base;
        if (vgic_validate_access(dist, range, offset)) {
                updated_state = call_range_handler(vcpu, &mmio, offset, range);
-               if (!is_write)
-                       memcpy(val, mmio.data, len);
        } else {
                if (!is_write)
                        memset(val, 0, len);
                updated_state = false;
        }
        spin_unlock(&dist->lock);
-       kvm_prepare_mmio(run, &mmio);
+       run->mmio.is_write      = is_write;
+       run->mmio.len           = len;
+       run->mmio.phys_addr     = addr;
+       memcpy(run->mmio.data, val, len);
+
        kvm_handle_mmio_return(vcpu, run);
 
        if (updated_state)
        return 0;
 }
 
-/**
- * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
- * @vcpu:      pointer to the vcpu performing the access
- * @run:       pointer to the kvm_run structure
- * @mmio:      pointer to the data describing the access
- *
- * returns true if the MMIO access has been performed in kernel space,
- * and false if it needs to be emulated in user space.
- * Calls the actual handling routine for the selected VGIC model.
- */
-bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
-                     struct kvm_exit_mmio *mmio)
-{
-       if (!irqchip_in_kernel(vcpu->kvm))
-               return false;
-
-       /*
-        * This will currently call either vgic_v2_handle_mmio() or
-        * vgic_v3_handle_mmio(), which in turn will call
-        * vgic_handle_mmio_range() defined above.
-        */
-       return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
-}
-
 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
                                 struct kvm_io_device *this,
                                 gpa_t addr, int len, void *val)
 
 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq);
 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu);
 
+struct kvm_exit_mmio {
+       phys_addr_t     phys_addr;
+       void            *data;
+       u32             len;
+       bool            is_write;
+       void            *private;
+};
+
 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
                     phys_addr_t offset, int mode);
 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
                                      int len, gpa_t offset);
 
-bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
-                           struct kvm_exit_mmio *mmio,
-                           const struct vgic_io_range *ranges,
-                           unsigned long mmio_base);
-
 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
                            phys_addr_t offset, int vcpu_id, int access);