#define in_softirq()           (softirq_count())
 #define in_interrupt()         (irq_count())
 
+#if defined(CONFIG_PREEMPT)
+# define PREEMPT_INATOMIC_BASE kernel_locked()
+# define PREEMPT_CHECK_OFFSET 1
+#else
+# define PREEMPT_INATOMIC_BASE 0
+# define PREEMPT_CHECK_OFFSET 0
+#endif
+
 /*
  * Are we running in atomic context?  WARNING: this macro cannot
  * always detect atomic context; in particular, it cannot know about
  * used in the general case to determine whether sleeping is possible.
  * Do not use in_atomic() in driver code.
  */
-#define in_atomic()            ((preempt_count() & ~PREEMPT_ACTIVE) != 0)
-
-#ifdef CONFIG_PREEMPT
-# define PREEMPT_CHECK_OFFSET 1
-#else
-# define PREEMPT_CHECK_OFFSET 0
-#endif
+#define in_atomic()    ((preempt_count() & ~PREEMPT_ACTIVE) != PREEMPT_INATOMIC_BASE)
 
 /*
  * Check whether we were atomic before we did preempt_disable():
- * (used by the scheduler)
+ * (used by the scheduler, *after* releasing the kernel lock)
  */
 #define in_atomic_preempt_off() \
                ((preempt_count() & ~PREEMPT_ACTIVE) != PREEMPT_CHECK_OFFSET)
 
 asmlinkage void __sched preempt_schedule(void)
 {
        struct thread_info *ti = current_thread_info();
-       struct task_struct *task = current;
-       int saved_lock_depth;
 
        /*
         * If there is a non-zero preempt_count or interrupts are disabled,
 
        do {
                add_preempt_count(PREEMPT_ACTIVE);
-
-               /*
-                * We keep the big kernel semaphore locked, but we
-                * clear ->lock_depth so that schedule() doesnt
-                * auto-release the semaphore:
-                */
-               saved_lock_depth = task->lock_depth;
-               task->lock_depth = -1;
                schedule();
-               task->lock_depth = saved_lock_depth;
                sub_preempt_count(PREEMPT_ACTIVE);
 
                /*
 asmlinkage void __sched preempt_schedule_irq(void)
 {
        struct thread_info *ti = current_thread_info();
-       struct task_struct *task = current;
-       int saved_lock_depth;
 
        /* Catch callers which need to be fixed */
        BUG_ON(ti->preempt_count || !irqs_disabled());
 
        do {
                add_preempt_count(PREEMPT_ACTIVE);
-
-               /*
-                * We keep the big kernel semaphore locked, but we
-                * clear ->lock_depth so that schedule() doesnt
-                * auto-release the semaphore:
-                */
-               saved_lock_depth = task->lock_depth;
-               task->lock_depth = -1;
                local_irq_enable();
                schedule();
                local_irq_disable();
-               task->lock_depth = saved_lock_depth;
                sub_preempt_count(PREEMPT_ACTIVE);
 
                /*
        spin_unlock_irqrestore(&rq->lock, flags);
 
        /* Set the preempt count _outside_ the spinlocks! */
+#if defined(CONFIG_PREEMPT)
+       task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
+#else
        task_thread_info(idle)->preempt_count = 0;
-
+#endif
        /*
         * The idle tasks have their own, simple scheduling class:
         */
 
 #include <linux/semaphore.h>
 
 /*
- * The 'big kernel semaphore'
+ * The 'big kernel lock'
  *
- * This mutex is taken and released recursively by lock_kernel()
+ * This spinlock is taken and released recursively by lock_kernel()
  * and unlock_kernel().  It is transparently dropped and reacquired
  * over schedule().  It is used to protect legacy code that hasn't
  * been migrated to a proper locking design yet.
  *
- * Note: code locked by this semaphore will only be serialized against
- * other code using the same locking facility. The code guarantees that
- * the task remains on the same CPU.
- *
  * Don't use in new code.
  */
-static DECLARE_MUTEX(kernel_sem);
+static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag);
+
 
 /*
- * Re-acquire the kernel semaphore.
+ * Acquire/release the underlying lock from the scheduler.
  *
- * This function is called with preemption off.
+ * This is called with preemption disabled, and should
+ * return an error value if it cannot get the lock and
+ * TIF_NEED_RESCHED gets set.
  *
- * We are executing in schedule() so the code must be extremely careful
- * about recursion, both due to the down() and due to the enabling of
- * preemption. schedule() will re-check the preemption flag after
- * reacquiring the semaphore.
+ * If it successfully gets the lock, it should increment
+ * the preemption count like any spinlock does.
+ *
+ * (This works on UP too - _raw_spin_trylock will never
+ * return false in that case)
  */
 int __lockfunc __reacquire_kernel_lock(void)
 {
-       struct task_struct *task = current;
-       int saved_lock_depth = task->lock_depth;
-
-       BUG_ON(saved_lock_depth < 0);
-
-       task->lock_depth = -1;
-       preempt_enable_no_resched();
-
-       down(&kernel_sem);
-
+       while (!_raw_spin_trylock(&kernel_flag)) {
+               if (test_thread_flag(TIF_NEED_RESCHED))
+                       return -EAGAIN;
+               cpu_relax();
+       }
        preempt_disable();
-       task->lock_depth = saved_lock_depth;
-
        return 0;
 }
 
 void __lockfunc __release_kernel_lock(void)
 {
-       up(&kernel_sem);
+       _raw_spin_unlock(&kernel_flag);
+       preempt_enable_no_resched();
 }
 
 /*
- * Getting the big kernel semaphore.
+ * These are the BKL spinlocks - we try to be polite about preemption.
+ * If SMP is not on (ie UP preemption), this all goes away because the
+ * _raw_spin_trylock() will always succeed.
  */
-void __lockfunc lock_kernel(void)
+#ifdef CONFIG_PREEMPT
+static inline void __lock_kernel(void)
 {
-       struct task_struct *task = current;
-       int depth = task->lock_depth + 1;
+       preempt_disable();
+       if (unlikely(!_raw_spin_trylock(&kernel_flag))) {
+               /*
+                * If preemption was disabled even before this
+                * was called, there's nothing we can be polite
+                * about - just spin.
+                */
+               if (preempt_count() > 1) {
+                       _raw_spin_lock(&kernel_flag);
+                       return;
+               }
 
-       if (likely(!depth))
                /*
-                * No recursion worries - we set up lock_depth _after_
+                * Otherwise, let's wait for the kernel lock
+                * with preemption enabled..
                 */
-               down(&kernel_sem);
+               do {
+                       preempt_enable();
+                       while (spin_is_locked(&kernel_flag))
+                               cpu_relax();
+                       preempt_disable();
+               } while (!_raw_spin_trylock(&kernel_flag));
+       }
+}
 
-       task->lock_depth = depth;
+#else
+
+/*
+ * Non-preemption case - just get the spinlock
+ */
+static inline void __lock_kernel(void)
+{
+       _raw_spin_lock(&kernel_flag);
 }
+#endif
 
-void __lockfunc unlock_kernel(void)
+static inline void __unlock_kernel(void)
 {
-       struct task_struct *task = current;
+       /*
+        * the BKL is not covered by lockdep, so we open-code the
+        * unlocking sequence (and thus avoid the dep-chain ops):
+        */
+       _raw_spin_unlock(&kernel_flag);
+       preempt_enable();
+}
 
-       BUG_ON(task->lock_depth < 0);
+/*
+ * Getting the big kernel lock.
+ *
+ * This cannot happen asynchronously, so we only need to
+ * worry about other CPU's.
+ */
+void __lockfunc lock_kernel(void)
+{
+       int depth = current->lock_depth+1;
+       if (likely(!depth))
+               __lock_kernel();
+       current->lock_depth = depth;
+}
 
-       if (likely(--task->lock_depth < 0))
-               up(&kernel_sem);
+void __lockfunc unlock_kernel(void)
+{
+       BUG_ON(current->lock_depth < 0);
+       if (likely(--current->lock_depth < 0))
+               __unlock_kernel();
 }
 
 EXPORT_SYMBOL(lock_kernel);