Have an explicit mm call to split higher order pages into individual pages.
 Should help to avoid bugs and be more explicit about the code's intention.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
                pte = consistent_pte[idx] + off;
                c->vm_pages = page;
 
+               split_page(page, order);
+
                /*
                 * Set the "dma handle"
                 */
                do {
                        BUG_ON(!pte_none(*pte));
 
-                       set_page_count(page, 1);
                        /*
                         * x86 does not mark the pages reserved...
                         */
                 * Free the otherwise unused pages.
                 */
                while (page < end) {
-                       set_page_count(page, 1);
                        __free_page(page);
                        page++;
                }
 
         */
        if (order > 0) {
                struct page *rpage = virt_to_page(page);
-
-               for (i = 1; i < (1 << order); i++)
-                       set_page_count(rpage + i, 1);
+               split_page(rpage, order);
        }
 
        err = 0;
 
  */
 unsigned long setup_zero_pages(void)
 {
-       unsigned long order, size;
+       unsigned int order;
+       unsigned long size;
        struct page *page;
 
        if (cpu_has_vce)
                panic("Oh boy, that early out of memory?");
 
        page = virt_to_page(empty_zero_page);
+       split_page(page, order);
        while (page < virt_to_page(empty_zero_page + (PAGE_SIZE << order))) {
                SetPageReserved(page);
-               set_page_count(page, 1);
                page++;
        }
 
 
                pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
                struct page *end = page + (1 << order);
 
+               split_page(page, order);
+
                /*
                 * Set the "dma handle"
                 */
                do {
                        BUG_ON(!pte_none(*pte));
 
-                       set_page_count(page, 1);
                        SetPageReserved(page);
                        set_pte_at(&init_mm, vaddr,
                                   pte, mk_pte(page, pgprot_noncached(PAGE_KERNEL)));
                 * Free the otherwise unused pages.
                 */
                while (page < end) {
-                       set_page_count(page, 1);
                        __free_page(page);
                        page++;
                }
 
        page = alloc_pages(gfp, order);
        if (!page)
                return NULL;
+       split_page(page, order);
 
        ret = page_address(page);
        *handle = virt_to_phys(ret);
        end  = page + (1 << order);
 
        while (++page < end) {
-               set_page_count(page, 1);
-
                /* Free any unused pages */
                if (page >= free) {
                        __free_page(page);
 
        p = (pte_t*) __get_free_pages(GFP_KERNEL|__GFP_REPEAT, COLOR_ORDER);
 
        if (likely(p)) {
-               struct page *page;
+               split_page(virt_to_page(p), COLOR_ORDER);
 
                for (i = 0; i < COLOR_SIZE; i++) {
-                       page = virt_to_page(p);
-
-                       set_page_count(page, 1);
-
                        if (ADDR_COLOR(p) == color)
                                pte = p;
                        else
        p = alloc_pages(GFP_KERNEL | __GFP_REPEAT, PTE_ORDER);
 
        if (likely(p)) {
-               for (i = 0; i < PAGE_ORDER; i++) {
-                       set_page_count(p, 1);
+               split_page(p, COLOR_ORDER);
 
+               for (i = 0; i < PAGE_ORDER; i++) {
                        if (PADDR_COLOR(page_address(p)) == color)
                                page = p;
                        else
 
 
 void put_page(struct page *page);
 
+#ifdef CONFIG_MMU
+void split_page(struct page *page, unsigned int order);
+#else
+static inline void split_page(struct page *page, unsigned int order) {}
+#endif
+
 /*
  * Multiple processes may "see" the same page. E.g. for untouched
  * mappings of /dev/null, all processes see the same page full of
 
  * The page has to be a nice clean _individual_ kernel allocation.
  * If you allocate a compound page, you need to have marked it as
  * such (__GFP_COMP), or manually just split the page up yourself
- * (which is mainly an issue of doing "set_page_count(page, 1)" for
- * each sub-page, and then freeing them one by one when you free
- * them rather than freeing it as a compound page).
+ * (see split_page()).
  *
  * NOTE! Traditionally this was done with "remap_pfn_range()" which
  * took an arbitrary page protection parameter. This doesn't allow
 
                clear_highpage(page + i);
 }
 
+#ifdef CONFIG_MMU
+/*
+ * split_page takes a non-compound higher-order page, and splits it into
+ * n (1<<order) sub-pages: page[0..n]
+ * Each sub-page must be freed individually.
+ *
+ * Note: this is probably too low level an operation for use in drivers.
+ * Please consult with lkml before using this in your driver.
+ */
+void split_page(struct page *page, unsigned int order)
+{
+       int i;
+
+       BUG_ON(PageCompound(page));
+       BUG_ON(!page_count(page));
+       for (i = 1; i < (1 << order); i++) {
+               BUG_ON(page_count(page + i));
+               set_page_count(page + i, 1);
+       }
+}
+#endif
+
 /*
  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
  * we cheat by calling it from here, in the order > 0 path.  Saves a branch