{
        struct spi_device       *spi = to_spi_device(dev);
 
-       /* spi masters may cleanup for released devices */
-       if (spi->master->cleanup)
-               spi->master->cleanup(spi);
+       /* spi controllers may cleanup for released devices */
+       if (spi->controller->cleanup)
+               spi->controller->cleanup(spi);
 
-       spi_master_put(spi->master);
+       spi_controller_put(spi->controller);
        kfree(spi);
 }
 
 static DEVICE_ATTR_RO(modalias);
 
 #define SPI_STATISTICS_ATTRS(field, file)                              \
-static ssize_t spi_master_##field##_show(struct device *dev,           \
-                                        struct device_attribute *attr, \
-                                        char *buf)                     \
+static ssize_t spi_controller_##field##_show(struct device *dev,       \
+                                            struct device_attribute *attr, \
+                                            char *buf)                 \
 {                                                                      \
-       struct spi_master *master = container_of(dev,                   \
-                                                struct spi_master, dev); \
-       return spi_statistics_##field##_show(&master->statistics, buf); \
+       struct spi_controller *ctlr = container_of(dev,                 \
+                                        struct spi_controller, dev);   \
+       return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
 }                                                                      \
-static struct device_attribute dev_attr_spi_master_##field = {         \
+static struct device_attribute dev_attr_spi_controller_##field = {     \
        .attr = { .name = file, .mode = 0444 },                         \
-       .show = spi_master_##field##_show,                              \
+       .show = spi_controller_##field##_show,                          \
 };                                                                     \
 static ssize_t spi_device_##field##_show(struct device *dev,           \
                                         struct device_attribute *attr, \
        NULL,
 };
 
-static struct attribute *spi_master_statistics_attrs[] = {
-       &dev_attr_spi_master_messages.attr,
-       &dev_attr_spi_master_transfers.attr,
-       &dev_attr_spi_master_errors.attr,
-       &dev_attr_spi_master_timedout.attr,
-       &dev_attr_spi_master_spi_sync.attr,
-       &dev_attr_spi_master_spi_sync_immediate.attr,
-       &dev_attr_spi_master_spi_async.attr,
-       &dev_attr_spi_master_bytes.attr,
-       &dev_attr_spi_master_bytes_rx.attr,
-       &dev_attr_spi_master_bytes_tx.attr,
-       &dev_attr_spi_master_transfer_bytes_histo0.attr,
-       &dev_attr_spi_master_transfer_bytes_histo1.attr,
-       &dev_attr_spi_master_transfer_bytes_histo2.attr,
-       &dev_attr_spi_master_transfer_bytes_histo3.attr,
-       &dev_attr_spi_master_transfer_bytes_histo4.attr,
-       &dev_attr_spi_master_transfer_bytes_histo5.attr,
-       &dev_attr_spi_master_transfer_bytes_histo6.attr,
-       &dev_attr_spi_master_transfer_bytes_histo7.attr,
-       &dev_attr_spi_master_transfer_bytes_histo8.attr,
-       &dev_attr_spi_master_transfer_bytes_histo9.attr,
-       &dev_attr_spi_master_transfer_bytes_histo10.attr,
-       &dev_attr_spi_master_transfer_bytes_histo11.attr,
-       &dev_attr_spi_master_transfer_bytes_histo12.attr,
-       &dev_attr_spi_master_transfer_bytes_histo13.attr,
-       &dev_attr_spi_master_transfer_bytes_histo14.attr,
-       &dev_attr_spi_master_transfer_bytes_histo15.attr,
-       &dev_attr_spi_master_transfer_bytes_histo16.attr,
-       &dev_attr_spi_master_transfers_split_maxsize.attr,
+static struct attribute *spi_controller_statistics_attrs[] = {
+       &dev_attr_spi_controller_messages.attr,
+       &dev_attr_spi_controller_transfers.attr,
+       &dev_attr_spi_controller_errors.attr,
+       &dev_attr_spi_controller_timedout.attr,
+       &dev_attr_spi_controller_spi_sync.attr,
+       &dev_attr_spi_controller_spi_sync_immediate.attr,
+       &dev_attr_spi_controller_spi_async.attr,
+       &dev_attr_spi_controller_bytes.attr,
+       &dev_attr_spi_controller_bytes_rx.attr,
+       &dev_attr_spi_controller_bytes_tx.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo0.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo1.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo2.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo3.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo4.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo5.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo6.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo7.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo8.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo9.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo10.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo11.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo12.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo13.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo14.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo15.attr,
+       &dev_attr_spi_controller_transfer_bytes_histo16.attr,
+       &dev_attr_spi_controller_transfers_split_maxsize.attr,
        NULL,
 };
 
-static const struct attribute_group spi_master_statistics_group = {
+static const struct attribute_group spi_controller_statistics_group = {
        .name  = "statistics",
-       .attrs  = spi_master_statistics_attrs,
+       .attrs  = spi_controller_statistics_attrs,
 };
 
 static const struct attribute_group *spi_master_groups[] = {
-       &spi_master_statistics_group,
+       &spi_controller_statistics_group,
        NULL,
 };
 
 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
                                       struct spi_transfer *xfer,
-                                      struct spi_master *master)
+                                      struct spi_controller *ctlr)
 {
        unsigned long flags;
        int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 
        stats->bytes += xfer->len;
        if ((xfer->tx_buf) &&
-           (xfer->tx_buf != master->dummy_tx))
+           (xfer->tx_buf != ctlr->dummy_tx))
                stats->bytes_tx += xfer->len;
        if ((xfer->rx_buf) &&
-           (xfer->rx_buf != master->dummy_rx))
+           (xfer->rx_buf != ctlr->dummy_rx))
                stats->bytes_rx += xfer->len;
 
        spin_unlock_irqrestore(&stats->lock, flags);
 /*-------------------------------------------------------------------------*/
 
 /* SPI devices should normally not be created by SPI device drivers; that
- * would make them board-specific.  Similarly with SPI master drivers.
+ * would make them board-specific.  Similarly with SPI controller drivers.
  * Device registration normally goes into like arch/.../mach.../board-YYY.c
  * with other readonly (flashable) information about mainboard devices.
  */
 };
 
 static LIST_HEAD(board_list);
-static LIST_HEAD(spi_master_list);
+static LIST_HEAD(spi_controller_list);
 
 /*
  * Used to protect add/del opertion for board_info list and
- * spi_master list, and their matching process
+ * spi_controller list, and their matching process
  */
 static DEFINE_MUTEX(board_lock);
 
 /**
  * spi_alloc_device - Allocate a new SPI device
- * @master: Controller to which device is connected
+ * @ctlr: Controller to which device is connected
  * Context: can sleep
  *
  * Allows a driver to allocate and initialize a spi_device without
  * spi_add_device() on it.
  *
  * Caller is responsible to call spi_add_device() on the returned
- * spi_device structure to add it to the SPI master.  If the caller
+ * spi_device structure to add it to the SPI controller.  If the caller
  * needs to discard the spi_device without adding it, then it should
  * call spi_dev_put() on it.
  *
  * Return: a pointer to the new device, or NULL.
  */
-struct spi_device *spi_alloc_device(struct spi_master *master)
+struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 {
        struct spi_device       *spi;
 
-       if (!spi_master_get(master))
+       if (!spi_controller_get(ctlr))
                return NULL;
 
        spi = kzalloc(sizeof(*spi), GFP_KERNEL);
        if (!spi) {
-               spi_master_put(master);
+               spi_controller_put(ctlr);
                return NULL;
        }
 
-       spi->master = master;
-       spi->dev.parent = &master->dev;
+       spi->master = spi->controller = ctlr;
+       spi->dev.parent = &ctlr->dev;
        spi->dev.bus = &spi_bus_type;
        spi->dev.release = spidev_release;
        spi->cs_gpio = -ENOENT;
                return;
        }
 
-       dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
+       dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
                     spi->chip_select);
 }
 
        struct spi_device *spi = to_spi_device(dev);
        struct spi_device *new_spi = data;
 
-       if (spi->master == new_spi->master &&
+       if (spi->controller == new_spi->controller &&
            spi->chip_select == new_spi->chip_select)
                return -EBUSY;
        return 0;
 int spi_add_device(struct spi_device *spi)
 {
        static DEFINE_MUTEX(spi_add_lock);
-       struct spi_master *master = spi->master;
-       struct device *dev = master->dev.parent;
+       struct spi_controller *ctlr = spi->controller;
+       struct device *dev = ctlr->dev.parent;
        int status;
 
        /* Chipselects are numbered 0..max; validate. */
-       if (spi->chip_select >= master->num_chipselect) {
-               dev_err(dev, "cs%d >= max %d\n",
-                       spi->chip_select,
-                       master->num_chipselect);
+       if (spi->chip_select >= ctlr->num_chipselect) {
+               dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
+                       ctlr->num_chipselect);
                return -EINVAL;
        }
 
                goto done;
        }
 
-       if (master->cs_gpios)
-               spi->cs_gpio = master->cs_gpios[spi->chip_select];
+       if (ctlr->cs_gpios)
+               spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 
        /* Drivers may modify this initial i/o setup, but will
         * normally rely on the device being setup.  Devices
 
 /**
  * spi_new_device - instantiate one new SPI device
- * @master: Controller to which device is connected
+ * @ctlr: Controller to which device is connected
  * @chip: Describes the SPI device
  * Context: can sleep
  *
  *
  * Return: the new device, or NULL.
  */
-struct spi_device *spi_new_device(struct spi_master *master,
+struct spi_device *spi_new_device(struct spi_controller *ctlr,
                                  struct spi_board_info *chip)
 {
        struct spi_device       *proxy;
         * suggests syslogged diagnostics are best here (ugh).
         */
 
-       proxy = spi_alloc_device(master);
+       proxy = spi_alloc_device(ctlr);
        if (!proxy)
                return NULL;
 
        if (chip->properties) {
                status = device_add_properties(&proxy->dev, chip->properties);
                if (status) {
-                       dev_err(&master->dev,
+                       dev_err(&ctlr->dev,
                                "failed to add properties to '%s': %d\n",
                                chip->modalias, status);
                        goto err_dev_put;
  * @spi: spi_device to unregister
  *
  * Start making the passed SPI device vanish. Normally this would be handled
- * by spi_unregister_master().
+ * by spi_unregister_controller().
  */
 void spi_unregister_device(struct spi_device *spi)
 {
 }
 EXPORT_SYMBOL_GPL(spi_unregister_device);
 
-static void spi_match_master_to_boardinfo(struct spi_master *master,
-                               struct spi_board_info *bi)
+static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
+                                             struct spi_board_info *bi)
 {
        struct spi_device *dev;
 
-       if (master->bus_num != bi->bus_num)
+       if (ctlr->bus_num != bi->bus_num)
                return;
 
-       dev = spi_new_device(master, bi);
+       dev = spi_new_device(ctlr, bi);
        if (!dev)
-               dev_err(master->dev.parent, "can't create new device for %s\n",
+               dev_err(ctlr->dev.parent, "can't create new device for %s\n",
                        bi->modalias);
 }
 
                return -ENOMEM;
 
        for (i = 0; i < n; i++, bi++, info++) {
-               struct spi_master *master;
+               struct spi_controller *ctlr;
 
                memcpy(&bi->board_info, info, sizeof(*info));
                if (info->properties) {
 
                mutex_lock(&board_lock);
                list_add_tail(&bi->list, &board_list);
-               list_for_each_entry(master, &spi_master_list, list)
-                       spi_match_master_to_boardinfo(master, &bi->board_info);
+               list_for_each_entry(ctlr, &spi_controller_list, list)
+                       spi_match_controller_to_boardinfo(ctlr,
+                                                         &bi->board_info);
                mutex_unlock(&board_lock);
        }
 
        if (gpio_is_valid(spi->cs_gpio)) {
                gpio_set_value(spi->cs_gpio, !enable);
                /* Some SPI masters need both GPIO CS & slave_select */
-               if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
-                   spi->master->set_cs)
-                       spi->master->set_cs(spi, !enable);
-       } else if (spi->master->set_cs) {
-               spi->master->set_cs(spi, !enable);
+               if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
+                   spi->controller->set_cs)
+                       spi->controller->set_cs(spi, !enable);
+       } else if (spi->controller->set_cs) {
+               spi->controller->set_cs(spi, !enable);
        }
 }
 
 #ifdef CONFIG_HAS_DMA
-static int spi_map_buf(struct spi_master *master, struct device *dev,
+static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
                       struct sg_table *sgt, void *buf, size_t len,
                       enum dma_data_direction dir)
 {
                desc_len = min_t(int, max_seg_size, PAGE_SIZE);
                sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
        } else if (virt_addr_valid(buf)) {
-               desc_len = min_t(int, max_seg_size, master->max_dma_len);
+               desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
                sgs = DIV_ROUND_UP(len, desc_len);
        } else {
                return -EINVAL;
        return 0;
 }
 
-static void spi_unmap_buf(struct spi_master *master, struct device *dev,
+static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
                          struct sg_table *sgt, enum dma_data_direction dir)
 {
        if (sgt->orig_nents) {
        }
 }
 
-static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
+static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 {
        struct device *tx_dev, *rx_dev;
        struct spi_transfer *xfer;
        int ret;
 
-       if (!master->can_dma)
+       if (!ctlr->can_dma)
                return 0;
 
-       if (master->dma_tx)
-               tx_dev = master->dma_tx->device->dev;
+       if (ctlr->dma_tx)
+               tx_dev = ctlr->dma_tx->device->dev;
        else
-               tx_dev = master->dev.parent;
+               tx_dev = ctlr->dev.parent;
 
-       if (master->dma_rx)
-               rx_dev = master->dma_rx->device->dev;
+       if (ctlr->dma_rx)
+               rx_dev = ctlr->dma_rx->device->dev;
        else
-               rx_dev = master->dev.parent;
+               rx_dev = ctlr->dev.parent;
 
        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
-               if (!master->can_dma(master, msg->spi, xfer))
+               if (!ctlr->can_dma(ctlr, msg->spi, xfer))
                        continue;
 
                if (xfer->tx_buf != NULL) {
-                       ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
+                       ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
                                          (void *)xfer->tx_buf, xfer->len,
                                          DMA_TO_DEVICE);
                        if (ret != 0)
                }
 
                if (xfer->rx_buf != NULL) {
-                       ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
+                       ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
                                          xfer->rx_buf, xfer->len,
                                          DMA_FROM_DEVICE);
                        if (ret != 0) {
-                               spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
+                               spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
                                              DMA_TO_DEVICE);
                                return ret;
                        }
                }
        }
 
-       master->cur_msg_mapped = true;
+       ctlr->cur_msg_mapped = true;
 
        return 0;
 }
 
-static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
+static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 {
        struct spi_transfer *xfer;
        struct device *tx_dev, *rx_dev;
 
-       if (!master->cur_msg_mapped || !master->can_dma)
+       if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
                return 0;
 
-       if (master->dma_tx)
-               tx_dev = master->dma_tx->device->dev;
+       if (ctlr->dma_tx)
+               tx_dev = ctlr->dma_tx->device->dev;
        else
-               tx_dev = master->dev.parent;
+               tx_dev = ctlr->dev.parent;
 
-       if (master->dma_rx)
-               rx_dev = master->dma_rx->device->dev;
+       if (ctlr->dma_rx)
+               rx_dev = ctlr->dma_rx->device->dev;
        else
-               rx_dev = master->dev.parent;
+               rx_dev = ctlr->dev.parent;
 
        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
-               if (!master->can_dma(master, msg->spi, xfer))
+               if (!ctlr->can_dma(ctlr, msg->spi, xfer))
                        continue;
 
-               spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
-               spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
+               spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
+               spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
        }
 
        return 0;
 }
 #else /* !CONFIG_HAS_DMA */
-static inline int spi_map_buf(struct spi_master *master,
-                             struct device *dev, struct sg_table *sgt,
-                             void *buf, size_t len,
+static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
+                             struct sg_table *sgt, void *buf, size_t len,
                              enum dma_data_direction dir)
 {
        return -EINVAL;
 }
 
-static inline void spi_unmap_buf(struct spi_master *master,
+static inline void spi_unmap_buf(struct spi_controller *ctlr,
                                 struct device *dev, struct sg_table *sgt,
                                 enum dma_data_direction dir)
 {
 }
 
-static inline int __spi_map_msg(struct spi_master *master,
+static inline int __spi_map_msg(struct spi_controller *ctlr,
                                struct spi_message *msg)
 {
        return 0;
 }
 
-static inline int __spi_unmap_msg(struct spi_master *master,
+static inline int __spi_unmap_msg(struct spi_controller *ctlr,
                                  struct spi_message *msg)
 {
        return 0;
 }
 #endif /* !CONFIG_HAS_DMA */
 
-static inline int spi_unmap_msg(struct spi_master *master,
+static inline int spi_unmap_msg(struct spi_controller *ctlr,
                                struct spi_message *msg)
 {
        struct spi_transfer *xfer;
                 * Restore the original value of tx_buf or rx_buf if they are
                 * NULL.
                 */
-               if (xfer->tx_buf == master->dummy_tx)
+               if (xfer->tx_buf == ctlr->dummy_tx)
                        xfer->tx_buf = NULL;
-               if (xfer->rx_buf == master->dummy_rx)
+               if (xfer->rx_buf == ctlr->dummy_rx)
                        xfer->rx_buf = NULL;
        }
 
-       return __spi_unmap_msg(master, msg);
+       return __spi_unmap_msg(ctlr, msg);
 }
 
-static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
+static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 {
        struct spi_transfer *xfer;
        void *tmp;
        unsigned int max_tx, max_rx;
 
-       if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
+       if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
                max_tx = 0;
                max_rx = 0;
 
                list_for_each_entry(xfer, &msg->transfers, transfer_list) {
-                       if ((master->flags & SPI_MASTER_MUST_TX) &&
+                       if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
                            !xfer->tx_buf)
                                max_tx = max(xfer->len, max_tx);
-                       if ((master->flags & SPI_MASTER_MUST_RX) &&
+                       if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
                            !xfer->rx_buf)
                                max_rx = max(xfer->len, max_rx);
                }
 
                if (max_tx) {
-                       tmp = krealloc(master->dummy_tx, max_tx,
+                       tmp = krealloc(ctlr->dummy_tx, max_tx,
                                       GFP_KERNEL | GFP_DMA);
                        if (!tmp)
                                return -ENOMEM;
-                       master->dummy_tx = tmp;
+                       ctlr->dummy_tx = tmp;
                        memset(tmp, 0, max_tx);
                }
 
                if (max_rx) {
-                       tmp = krealloc(master->dummy_rx, max_rx,
+                       tmp = krealloc(ctlr->dummy_rx, max_rx,
                                       GFP_KERNEL | GFP_DMA);
                        if (!tmp)
                                return -ENOMEM;
-                       master->dummy_rx = tmp;
+                       ctlr->dummy_rx = tmp;
                }
 
                if (max_tx || max_rx) {
                        list_for_each_entry(xfer, &msg->transfers,
                                            transfer_list) {
                                if (!xfer->tx_buf)
-                                       xfer->tx_buf = master->dummy_tx;
+                                       xfer->tx_buf = ctlr->dummy_tx;
                                if (!xfer->rx_buf)
-                                       xfer->rx_buf = master->dummy_rx;
+                                       xfer->rx_buf = ctlr->dummy_rx;
                        }
                }
        }
 
-       return __spi_map_msg(master, msg);
+       return __spi_map_msg(ctlr, msg);
 }
 
 /*
  * drivers which implement a transfer_one() operation.  It provides
  * standard handling of delays and chip select management.
  */
-static int spi_transfer_one_message(struct spi_master *master,
+static int spi_transfer_one_message(struct spi_controller *ctlr,
                                    struct spi_message *msg)
 {
        struct spi_transfer *xfer;
        bool keep_cs = false;
        int ret = 0;
        unsigned long long ms = 1;
-       struct spi_statistics *statm = &master->statistics;
+       struct spi_statistics *statm = &ctlr->statistics;
        struct spi_statistics *stats = &msg->spi->statistics;
 
        spi_set_cs(msg->spi, true);
        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
                trace_spi_transfer_start(msg, xfer);
 
-               spi_statistics_add_transfer_stats(statm, xfer, master);
-               spi_statistics_add_transfer_stats(stats, xfer, master);
+               spi_statistics_add_transfer_stats(statm, xfer, ctlr);
+               spi_statistics_add_transfer_stats(stats, xfer, ctlr);
 
                if (xfer->tx_buf || xfer->rx_buf) {
-                       reinit_completion(&master->xfer_completion);
+                       reinit_completion(&ctlr->xfer_completion);
 
-                       ret = master->transfer_one(master, msg->spi, xfer);
+                       ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
                        if (ret < 0) {
                                SPI_STATISTICS_INCREMENT_FIELD(statm,
                                                               errors);
                                if (ms > UINT_MAX)
                                        ms = UINT_MAX;
 
-                               ms = wait_for_completion_timeout(&master->xfer_completion,
+                               ms = wait_for_completion_timeout(&ctlr->xfer_completion,
                                                                 msecs_to_jiffies(ms));
                        }
 
        if (msg->status == -EINPROGRESS)
                msg->status = ret;
 
-       if (msg->status && master->handle_err)
-               master->handle_err(master, msg);
+       if (msg->status && ctlr->handle_err)
+               ctlr->handle_err(ctlr, msg);
 
-       spi_res_release(master, msg);
+       spi_res_release(ctlr, msg);
 
-       spi_finalize_current_message(master);
+       spi_finalize_current_message(ctlr);
 
        return ret;
 }
 
 /**
  * spi_finalize_current_transfer - report completion of a transfer
- * @master: the master reporting completion
+ * @ctlr: the controller reporting completion
  *
  * Called by SPI drivers using the core transfer_one_message()
  * implementation to notify it that the current interrupt driven
  * transfer has finished and the next one may be scheduled.
  */
-void spi_finalize_current_transfer(struct spi_master *master)
+void spi_finalize_current_transfer(struct spi_controller *ctlr)
 {
-       complete(&master->xfer_completion);
+       complete(&ctlr->xfer_completion);
 }
 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
 
 /**
  * __spi_pump_messages - function which processes spi message queue
- * @master: master to process queue for
+ * @ctlr: controller to process queue for
  * @in_kthread: true if we are in the context of the message pump thread
  *
  * This function checks if there is any spi message in the queue that
  * inside spi_sync(); the queue extraction handling at the top of the
  * function should deal with this safely.
  */
-static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
+static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
 {
        unsigned long flags;
        bool was_busy = false;
        int ret;
 
        /* Lock queue */
-       spin_lock_irqsave(&master->queue_lock, flags);
+       spin_lock_irqsave(&ctlr->queue_lock, flags);
 
        /* Make sure we are not already running a message */
-       if (master->cur_msg) {
-               spin_unlock_irqrestore(&master->queue_lock, flags);
+       if (ctlr->cur_msg) {
+               spin_unlock_irqrestore(&ctlr->queue_lock, flags);
                return;
        }
 
        /* If another context is idling the device then defer */
-       if (master->idling) {
-               kthread_queue_work(&master->kworker, &master->pump_messages);
-               spin_unlock_irqrestore(&master->queue_lock, flags);
+       if (ctlr->idling) {
+               kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
+               spin_unlock_irqrestore(&ctlr->queue_lock, flags);
                return;
        }
 
        /* Check if the queue is idle */
-       if (list_empty(&master->queue) || !master->running) {
-               if (!master->busy) {
-                       spin_unlock_irqrestore(&master->queue_lock, flags);
+       if (list_empty(&ctlr->queue) || !ctlr->running) {
+               if (!ctlr->busy) {
+                       spin_unlock_irqrestore(&ctlr->queue_lock, flags);
                        return;
                }
 
                /* Only do teardown in the thread */
                if (!in_kthread) {
-                       kthread_queue_work(&master->kworker,
-                                          &master->pump_messages);
-                       spin_unlock_irqrestore(&master->queue_lock, flags);
+                       kthread_queue_work(&ctlr->kworker,
+                                          &ctlr->pump_messages);
+                       spin_unlock_irqrestore(&ctlr->queue_lock, flags);
                        return;
                }
 
-               master->busy = false;
-               master->idling = true;
-               spin_unlock_irqrestore(&master->queue_lock, flags);
-
-               kfree(master->dummy_rx);
-               master->dummy_rx = NULL;
-               kfree(master->dummy_tx);
-               master->dummy_tx = NULL;
-               if (master->unprepare_transfer_hardware &&
-                   master->unprepare_transfer_hardware(master))
-                       dev_err(&master->dev,
+               ctlr->busy = false;
+               ctlr->idling = true;
+               spin_unlock_irqrestore(&ctlr->queue_lock, flags);
+
+               kfree(ctlr->dummy_rx);
+               ctlr->dummy_rx = NULL;
+               kfree(ctlr->dummy_tx);
+               ctlr->dummy_tx = NULL;
+               if (ctlr->unprepare_transfer_hardware &&
+                   ctlr->unprepare_transfer_hardware(ctlr))
+                       dev_err(&ctlr->dev,
                                "failed to unprepare transfer hardware\n");
-               if (master->auto_runtime_pm) {
-                       pm_runtime_mark_last_busy(master->dev.parent);
-                       pm_runtime_put_autosuspend(master->dev.parent);
+               if (ctlr->auto_runtime_pm) {
+                       pm_runtime_mark_last_busy(ctlr->dev.parent);
+                       pm_runtime_put_autosuspend(ctlr->dev.parent);
                }
-               trace_spi_master_idle(master);
+               trace_spi_controller_idle(ctlr);
 
-               spin_lock_irqsave(&master->queue_lock, flags);
-               master->idling = false;
-               spin_unlock_irqrestore(&master->queue_lock, flags);
+               spin_lock_irqsave(&ctlr->queue_lock, flags);
+               ctlr->idling = false;
+               spin_unlock_irqrestore(&ctlr->queue_lock, flags);
                return;
        }
 
        /* Extract head of queue */
-       master->cur_msg =
-               list_first_entry(&master->queue, struct spi_message, queue);
+       ctlr->cur_msg =
+               list_first_entry(&ctlr->queue, struct spi_message, queue);
 
-       list_del_init(&master->cur_msg->queue);
-       if (master->busy)
+       list_del_init(&ctlr->cur_msg->queue);
+       if (ctlr->busy)
                was_busy = true;
        else
-               master->busy = true;
-       spin_unlock_irqrestore(&master->queue_lock, flags);
+               ctlr->busy = true;
+       spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
-       mutex_lock(&master->io_mutex);
+       mutex_lock(&ctlr->io_mutex);
 
-       if (!was_busy && master->auto_runtime_pm) {
-               ret = pm_runtime_get_sync(master->dev.parent);
+       if (!was_busy && ctlr->auto_runtime_pm) {
+               ret = pm_runtime_get_sync(ctlr->dev.parent);
                if (ret < 0) {
-                       dev_err(&master->dev, "Failed to power device: %d\n",
+                       dev_err(&ctlr->dev, "Failed to power device: %d\n",
                                ret);
-                       mutex_unlock(&master->io_mutex);
+                       mutex_unlock(&ctlr->io_mutex);
                        return;
                }
        }
 
        if (!was_busy)
-               trace_spi_master_busy(master);
+               trace_spi_controller_busy(ctlr);
 
-       if (!was_busy && master->prepare_transfer_hardware) {
-               ret = master->prepare_transfer_hardware(master);
+       if (!was_busy && ctlr->prepare_transfer_hardware) {
+               ret = ctlr->prepare_transfer_hardware(ctlr);
                if (ret) {
-                       dev_err(&master->dev,
+                       dev_err(&ctlr->dev,
                                "failed to prepare transfer hardware\n");
 
-                       if (master->auto_runtime_pm)
-                               pm_runtime_put(master->dev.parent);
-                       mutex_unlock(&master->io_mutex);
+                       if (ctlr->auto_runtime_pm)
+                               pm_runtime_put(ctlr->dev.parent);
+                       mutex_unlock(&ctlr->io_mutex);
                        return;
                }
        }
 
-       trace_spi_message_start(master->cur_msg);
+       trace_spi_message_start(ctlr->cur_msg);
 
-       if (master->prepare_message) {
-               ret = master->prepare_message(master, master->cur_msg);
+       if (ctlr->prepare_message) {
+               ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
                if (ret) {
-                       dev_err(&master->dev,
-                               "failed to prepare message: %d\n", ret);
-                       master->cur_msg->status = ret;
-                       spi_finalize_current_message(master);
+                       dev_err(&ctlr->dev, "failed to prepare message: %d\n",
+                               ret);
+                       ctlr->cur_msg->status = ret;
+                       spi_finalize_current_message(ctlr);
                        goto out;
                }
-               master->cur_msg_prepared = true;
+               ctlr->cur_msg_prepared = true;
        }
 
-       ret = spi_map_msg(master, master->cur_msg);
+       ret = spi_map_msg(ctlr, ctlr->cur_msg);
        if (ret) {
-               master->cur_msg->status = ret;
-               spi_finalize_current_message(master);
+               ctlr->cur_msg->status = ret;
+               spi_finalize_current_message(ctlr);
                goto out;
        }
 
-       ret = master->transfer_one_message(master, master->cur_msg);
+       ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
        if (ret) {
-               dev_err(&master->dev,
+               dev_err(&ctlr->dev,
                        "failed to transfer one message from queue\n");
                goto out;
        }
 
 out:
-       mutex_unlock(&master->io_mutex);
+       mutex_unlock(&ctlr->io_mutex);
 
        /* Prod the scheduler in case transfer_one() was busy waiting */
        if (!ret)
 
 /**
  * spi_pump_messages - kthread work function which processes spi message queue
- * @work: pointer to kthread work struct contained in the master struct
+ * @work: pointer to kthread work struct contained in the controller struct
  */
 static void spi_pump_messages(struct kthread_work *work)
 {
-       struct spi_master *master =
-               container_of(work, struct spi_master, pump_messages);
+       struct spi_controller *ctlr =
+               container_of(work, struct spi_controller, pump_messages);
 
-       __spi_pump_messages(master, true);
+       __spi_pump_messages(ctlr, true);
 }
 
-static int spi_init_queue(struct spi_master *master)
+static int spi_init_queue(struct spi_controller *ctlr)
 {
        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 
-       master->running = false;
-       master->busy = false;
+       ctlr->running = false;
+       ctlr->busy = false;
 
-       kthread_init_worker(&master->kworker);
-       master->kworker_task = kthread_run(kthread_worker_fn,
-                                          &master->kworker, "%s",
-                                          dev_name(&master->dev));
-       if (IS_ERR(master->kworker_task)) {
-               dev_err(&master->dev, "failed to create message pump task\n");
-               return PTR_ERR(master->kworker_task);
+       kthread_init_worker(&ctlr->kworker);
+       ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
+                                        "%s", dev_name(&ctlr->dev));
+       if (IS_ERR(ctlr->kworker_task)) {
+               dev_err(&ctlr->dev, "failed to create message pump task\n");
+               return PTR_ERR(ctlr->kworker_task);
        }
-       kthread_init_work(&master->pump_messages, spi_pump_messages);
+       kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
 
        /*
-        * Master config will indicate if this controller should run the
+        * Controller config will indicate if this controller should run the
         * message pump with high (realtime) priority to reduce the transfer
         * latency on the bus by minimising the delay between a transfer
         * request and the scheduling of the message pump thread. Without this
         * setting the message pump thread will remain at default priority.
         */
-       if (master->rt) {
-               dev_info(&master->dev,
+       if (ctlr->rt) {
+               dev_info(&ctlr->dev,
                        "will run message pump with realtime priority\n");
-               sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m);
+               sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m);
        }
 
        return 0;
 /**
  * spi_get_next_queued_message() - called by driver to check for queued
  * messages
- * @master: the master to check for queued messages
+ * @ctlr: the controller to check for queued messages
  *
  * If there are more messages in the queue, the next message is returned from
  * this call.
  *
  * Return: the next message in the queue, else NULL if the queue is empty.
  */
-struct spi_message *spi_get_next_queued_message(struct spi_master *master)
+struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
 {
        struct spi_message *next;
        unsigned long flags;
 
        /* get a pointer to the next message, if any */
-       spin_lock_irqsave(&master->queue_lock, flags);
-       next = list_first_entry_or_null(&master->queue, struct spi_message,
+       spin_lock_irqsave(&ctlr->queue_lock, flags);
+       next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
                                        queue);
-       spin_unlock_irqrestore(&master->queue_lock, flags);
+       spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
        return next;
 }
 
 /**
  * spi_finalize_current_message() - the current message is complete
- * @master: the master to return the message to
+ * @ctlr: the controller to return the message to
  *
  * Called by the driver to notify the core that the message in the front of the
  * queue is complete and can be removed from the queue.
  */
-void spi_finalize_current_message(struct spi_master *master)
+void spi_finalize_current_message(struct spi_controller *ctlr)
 {
        struct spi_message *mesg;
        unsigned long flags;
        int ret;
 
-       spin_lock_irqsave(&master->queue_lock, flags);
-       mesg = master->cur_msg;
-       spin_unlock_irqrestore(&master->queue_lock, flags);
+       spin_lock_irqsave(&ctlr->queue_lock, flags);
+       mesg = ctlr->cur_msg;
+       spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
-       spi_unmap_msg(master, mesg);
+       spi_unmap_msg(ctlr, mesg);
 
-       if (master->cur_msg_prepared && master->unprepare_message) {
-               ret = master->unprepare_message(master, mesg);
+       if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
+               ret = ctlr->unprepare_message(ctlr, mesg);
                if (ret) {
-                       dev_err(&master->dev,
-                               "failed to unprepare message: %d\n", ret);
+                       dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
+                               ret);
                }
        }
 
-       spin_lock_irqsave(&master->queue_lock, flags);
-       master->cur_msg = NULL;
-       master->cur_msg_prepared = false;
-       kthread_queue_work(&master->kworker, &master->pump_messages);
-       spin_unlock_irqrestore(&master->queue_lock, flags);
+       spin_lock_irqsave(&ctlr->queue_lock, flags);
+       ctlr->cur_msg = NULL;
+       ctlr->cur_msg_prepared = false;
+       kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
+       spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
        trace_spi_message_done(mesg);
 
 }
 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
 
-static int spi_start_queue(struct spi_master *master)
+static int spi_start_queue(struct spi_controller *ctlr)
 {
        unsigned long flags;
 
-       spin_lock_irqsave(&master->queue_lock, flags);
+       spin_lock_irqsave(&ctlr->queue_lock, flags);
 
-       if (master->running || master->busy) {
-               spin_unlock_irqrestore(&master->queue_lock, flags);
+       if (ctlr->running || ctlr->busy) {
+               spin_unlock_irqrestore(&ctlr->queue_lock, flags);
                return -EBUSY;
        }
 
-       master->running = true;
-       master->cur_msg = NULL;
-       spin_unlock_irqrestore(&master->queue_lock, flags);
+       ctlr->running = true;
+       ctlr->cur_msg = NULL;
+       spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
-       kthread_queue_work(&master->kworker, &master->pump_messages);
+       kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
 
        return 0;
 }
 
-static int spi_stop_queue(struct spi_master *master)
+static int spi_stop_queue(struct spi_controller *ctlr)
 {
        unsigned long flags;
        unsigned limit = 500;
        int ret = 0;
 
-       spin_lock_irqsave(&master->queue_lock, flags);
+       spin_lock_irqsave(&ctlr->queue_lock, flags);
 
        /*
         * This is a bit lame, but is optimized for the common execution path.
-        * A wait_queue on the master->busy could be used, but then the common
+        * A wait_queue on the ctlr->busy could be used, but then the common
         * execution path (pump_messages) would be required to call wake_up or
         * friends on every SPI message. Do this instead.
         */
-       while ((!list_empty(&master->queue) || master->busy) && limit--) {
-               spin_unlock_irqrestore(&master->queue_lock, flags);
+       while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
+               spin_unlock_irqrestore(&ctlr->queue_lock, flags);
                usleep_range(10000, 11000);
-               spin_lock_irqsave(&master->queue_lock, flags);
+               spin_lock_irqsave(&ctlr->queue_lock, flags);
        }
 
-       if (!list_empty(&master->queue) || master->busy)
+       if (!list_empty(&ctlr->queue) || ctlr->busy)
                ret = -EBUSY;
        else
-               master->running = false;
+               ctlr->running = false;
 
-       spin_unlock_irqrestore(&master->queue_lock, flags);
+       spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
        if (ret) {
-               dev_warn(&master->dev,
-                        "could not stop message queue\n");
+               dev_warn(&ctlr->dev, "could not stop message queue\n");
                return ret;
        }
        return ret;
 }
 
-static int spi_destroy_queue(struct spi_master *master)
+static int spi_destroy_queue(struct spi_controller *ctlr)
 {
        int ret;
 
-       ret = spi_stop_queue(master);
+       ret = spi_stop_queue(ctlr);
 
        /*
         * kthread_flush_worker will block until all work is done.
         * return anyway.
         */
        if (ret) {
-               dev_err(&master->dev, "problem destroying queue\n");
+               dev_err(&ctlr->dev, "problem destroying queue\n");
                return ret;
        }
 
-       kthread_flush_worker(&master->kworker);
-       kthread_stop(master->kworker_task);
+       kthread_flush_worker(&ctlr->kworker);
+       kthread_stop(ctlr->kworker_task);
 
        return 0;
 }
                                 struct spi_message *msg,
                                 bool need_pump)
 {
-       struct spi_master *master = spi->master;
+       struct spi_controller *ctlr = spi->controller;
        unsigned long flags;
 
-       spin_lock_irqsave(&master->queue_lock, flags);
+       spin_lock_irqsave(&ctlr->queue_lock, flags);
 
-       if (!master->running) {
-               spin_unlock_irqrestore(&master->queue_lock, flags);
+       if (!ctlr->running) {
+               spin_unlock_irqrestore(&ctlr->queue_lock, flags);
                return -ESHUTDOWN;
        }
        msg->actual_length = 0;
        msg->status = -EINPROGRESS;
 
-       list_add_tail(&msg->queue, &master->queue);
-       if (!master->busy && need_pump)
-               kthread_queue_work(&master->kworker, &master->pump_messages);
+       list_add_tail(&msg->queue, &ctlr->queue);
+       if (!ctlr->busy && need_pump)
+               kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
 
-       spin_unlock_irqrestore(&master->queue_lock, flags);
+       spin_unlock_irqrestore(&ctlr->queue_lock, flags);
        return 0;
 }
 
        return __spi_queued_transfer(spi, msg, true);
 }
 
-static int spi_master_initialize_queue(struct spi_master *master)
+static int spi_controller_initialize_queue(struct spi_controller *ctlr)
 {
        int ret;
 
-       master->transfer = spi_queued_transfer;
-       if (!master->transfer_one_message)
-               master->transfer_one_message = spi_transfer_one_message;
+       ctlr->transfer = spi_queued_transfer;
+       if (!ctlr->transfer_one_message)
+               ctlr->transfer_one_message = spi_transfer_one_message;
 
        /* Initialize and start queue */
-       ret = spi_init_queue(master);
+       ret = spi_init_queue(ctlr);
        if (ret) {
-               dev_err(&master->dev, "problem initializing queue\n");
+               dev_err(&ctlr->dev, "problem initializing queue\n");
                goto err_init_queue;
        }
-       master->queued = true;
-       ret = spi_start_queue(master);
+       ctlr->queued = true;
+       ret = spi_start_queue(ctlr);
        if (ret) {
-               dev_err(&master->dev, "problem starting queue\n");
+               dev_err(&ctlr->dev, "problem starting queue\n");
                goto err_start_queue;
        }
 
        return 0;
 
 err_start_queue:
-       spi_destroy_queue(master);
+       spi_destroy_queue(ctlr);
 err_init_queue:
        return ret;
 }
 /*-------------------------------------------------------------------------*/
 
 #if defined(CONFIG_OF)
-static int of_spi_parse_dt(struct spi_master *master, struct spi_device *spi,
+static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
                           struct device_node *nc)
 {
        u32 value;
                        spi->mode |= SPI_TX_QUAD;
                        break;
                default:
-                       dev_warn(&master->dev,
+                       dev_warn(&ctlr->dev,
                                "spi-tx-bus-width %d not supported\n",
                                value);
                        break;
                        spi->mode |= SPI_RX_QUAD;
                        break;
                default:
-                       dev_warn(&master->dev,
+                       dev_warn(&ctlr->dev,
                                "spi-rx-bus-width %d not supported\n",
                                value);
                        break;
                }
        }
 
-       if (spi_controller_is_slave(master)) {
+       if (spi_controller_is_slave(ctlr)) {
                if (strcmp(nc->name, "slave")) {
-                       dev_err(&master->dev, "%s is not called 'slave'\n",
+                       dev_err(&ctlr->dev, "%s is not called 'slave'\n",
                                nc->full_name);
                        return -EINVAL;
                }
        /* Device address */
        rc = of_property_read_u32(nc, "reg", &value);
        if (rc) {
-               dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
+               dev_err(&ctlr->dev, "%s has no valid 'reg' property (%d)\n",
                        nc->full_name, rc);
                return rc;
        }
        /* Device speed */
        rc = of_property_read_u32(nc, "spi-max-frequency", &value);
        if (rc) {
-               dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
+               dev_err(&ctlr->dev,
+                       "%s has no valid 'spi-max-frequency' property (%d)\n",
                        nc->full_name, rc);
                return rc;
        }
 }
 
 static struct spi_device *
-of_register_spi_device(struct spi_master *master, struct device_node *nc)
+of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
 {
        struct spi_device *spi;
        int rc;
 
        /* Alloc an spi_device */
-       spi = spi_alloc_device(master);
+       spi = spi_alloc_device(ctlr);
        if (!spi) {
-               dev_err(&master->dev, "spi_device alloc error for %s\n",
+               dev_err(&ctlr->dev, "spi_device alloc error for %s\n",
                        nc->full_name);
                rc = -ENOMEM;
                goto err_out;
        rc = of_modalias_node(nc, spi->modalias,
                                sizeof(spi->modalias));
        if (rc < 0) {
-               dev_err(&master->dev, "cannot find modalias for %s\n",
+               dev_err(&ctlr->dev, "cannot find modalias for %s\n",
                        nc->full_name);
                goto err_out;
        }
 
-       rc = of_spi_parse_dt(master, spi, nc);
+       rc = of_spi_parse_dt(ctlr, spi, nc);
        if (rc)
                goto err_out;
 
        /* Register the new device */
        rc = spi_add_device(spi);
        if (rc) {
-               dev_err(&master->dev, "spi_device register error %s\n",
+               dev_err(&ctlr->dev, "spi_device register error %s\n",
                        nc->full_name);
                goto err_of_node_put;
        }
 
 /**
  * of_register_spi_devices() - Register child devices onto the SPI bus
- * @master:    Pointer to spi_master device
+ * @ctlr:      Pointer to spi_controller device
  *
  * Registers an spi_device for each child node of controller node which
  * represents a valid SPI slave.
  */
-static void of_register_spi_devices(struct spi_master *master)
+static void of_register_spi_devices(struct spi_controller *ctlr)
 {
        struct spi_device *spi;
        struct device_node *nc;
 
-       if (!master->dev.of_node)
+       if (!ctlr->dev.of_node)
                return;
 
-       for_each_available_child_of_node(master->dev.of_node, nc) {
+       for_each_available_child_of_node(ctlr->dev.of_node, nc) {
                if (of_node_test_and_set_flag(nc, OF_POPULATED))
                        continue;
-               spi = of_register_spi_device(master, nc);
+               spi = of_register_spi_device(ctlr, nc);
                if (IS_ERR(spi)) {
-                       dev_warn(&master->dev, "Failed to create SPI device for %s\n",
-                               nc->full_name);
+                       dev_warn(&ctlr->dev,
+                                "Failed to create SPI device for %s\n",
+                                nc->full_name);
                        of_node_clear_flag(nc, OF_POPULATED);
                }
        }
 }
 #else
-static void of_register_spi_devices(struct spi_master *master) { }
+static void of_register_spi_devices(struct spi_controller *ctlr) { }
 #endif
 
 #ifdef CONFIG_ACPI
 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
 {
        struct spi_device *spi = data;
-       struct spi_master *master = spi->master;
+       struct spi_controller *ctlr = spi->controller;
 
        if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
                struct acpi_resource_spi_serialbus *sb;
                         * 0 .. max - 1 so we need to ask the driver to
                         * translate between the two schemes.
                         */
-                       if (master->fw_translate_cs) {
-                               int cs = master->fw_translate_cs(master,
+                       if (ctlr->fw_translate_cs) {
+                               int cs = ctlr->fw_translate_cs(ctlr,
                                                sb->device_selection);
                                if (cs < 0)
                                        return cs;
        return 1;
 }
 
-static acpi_status acpi_register_spi_device(struct spi_master *master,
+static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
                                            struct acpi_device *adev)
 {
        struct list_head resource_list;
            acpi_device_enumerated(adev))
                return AE_OK;
 
-       spi = spi_alloc_device(master);
+       spi = spi_alloc_device(ctlr);
        if (!spi) {
-               dev_err(&master->dev, "failed to allocate SPI device for %s\n",
+               dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
                        dev_name(&adev->dev));
                return AE_NO_MEMORY;
        }
        adev->power.flags.ignore_parent = true;
        if (spi_add_device(spi)) {
                adev->power.flags.ignore_parent = false;
-               dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
+               dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
                        dev_name(&adev->dev));
                spi_dev_put(spi);
        }
 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
                                       void *data, void **return_value)
 {
-       struct spi_master *master = data;
+       struct spi_controller *ctlr = data;
        struct acpi_device *adev;
 
        if (acpi_bus_get_device(handle, &adev))
                return AE_OK;
 
-       return acpi_register_spi_device(master, adev);
+       return acpi_register_spi_device(ctlr, adev);
 }
 
-static void acpi_register_spi_devices(struct spi_master *master)
+static void acpi_register_spi_devices(struct spi_controller *ctlr)
 {
        acpi_status status;
        acpi_handle handle;
 
-       handle = ACPI_HANDLE(master->dev.parent);
+       handle = ACPI_HANDLE(ctlr->dev.parent);
        if (!handle)
                return;
 
        status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
-                                    acpi_spi_add_device, NULL,
-                                    master, NULL);
+                                    acpi_spi_add_device, NULL, ctlr, NULL);
        if (ACPI_FAILURE(status))
-               dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
+               dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
 }
 #else
-static inline void acpi_register_spi_devices(struct spi_master *master) {}
+static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
 #endif /* CONFIG_ACPI */
 
-static void spi_master_release(struct device *dev)
+static void spi_controller_release(struct device *dev)
 {
-       struct spi_master *master;
+       struct spi_controller *ctlr;
 
-       master = container_of(dev, struct spi_master, dev);
-       kfree(master);
+       ctlr = container_of(dev, struct spi_controller, dev);
+       kfree(ctlr);
 }
 
 static struct class spi_master_class = {
        .name           = "spi_master",
        .owner          = THIS_MODULE,
-       .dev_release    = spi_master_release,
+       .dev_release    = spi_controller_release,
        .dev_groups     = spi_master_groups,
 };
 
  */
 int spi_slave_abort(struct spi_device *spi)
 {
-       struct spi_master *master = spi->master;
+       struct spi_controller *ctlr = spi->controller;
 
-       if (spi_controller_is_slave(master) && master->slave_abort)
-               return master->slave_abort(master);
+       if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
+               return ctlr->slave_abort(ctlr);
 
        return -ENOTSUPP;
 }
 static ssize_t spi_slave_show(struct device *dev,
                              struct device_attribute *attr, char *buf)
 {
-       struct spi_master *ctlr = container_of(dev, struct spi_master, dev);
+       struct spi_controller *ctlr = container_of(dev, struct spi_controller,
+                                                  dev);
        struct device *child;
 
        child = device_find_child(&ctlr->dev, NULL, match_true);
                               struct device_attribute *attr, const char *buf,
                               size_t count)
 {
-       struct spi_master *ctlr = container_of(dev, struct spi_master, dev);
+       struct spi_controller *ctlr = container_of(dev, struct spi_controller,
+                                                  dev);
        struct spi_device *spi;
        struct device *child;
        char name[32];
 };
 
 static const struct attribute_group *spi_slave_groups[] = {
-       &spi_master_statistics_group,
+       &spi_controller_statistics_group,
        &spi_slave_group,
        NULL,
 };
 static struct class spi_slave_class = {
        .name           = "spi_slave",
        .owner          = THIS_MODULE,
-       .dev_release    = spi_master_release,
+       .dev_release    = spi_controller_release,
        .dev_groups     = spi_slave_groups,
 };
 #else
  * @dev: the controller, possibly using the platform_bus
  * @size: how much zeroed driver-private data to allocate; the pointer to this
  *     memory is in the driver_data field of the returned device,
- *     accessible with spi_master_get_devdata().
+ *     accessible with spi_controller_get_devdata().
  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
  *     slave (true) controller
  * Context: can sleep
  *
  * This call is used only by SPI controller drivers, which are the
  * only ones directly touching chip registers.  It's how they allocate
- * an spi_master structure, prior to calling spi_register_master().
+ * an spi_controller structure, prior to calling spi_register_controller().
  *
  * This must be called from context that can sleep.
  *
  * The caller is responsible for assigning the bus number and initializing the
- * controller's methods before calling spi_register_master(); and (after errors
- * adding the device) calling spi_master_put() to prevent a memory leak.
+ * controller's methods before calling spi_register_controller(); and (after
+ * errors adding the device) calling spi_controller_put() to prevent a memory
+ * leak.
  *
  * Return: the SPI controller structure on success, else NULL.
  */
-struct spi_master *__spi_alloc_controller(struct device *dev,
-                                         unsigned int size, bool slave)
+struct spi_controller *__spi_alloc_controller(struct device *dev,
+                                             unsigned int size, bool slave)
 {
-       struct spi_master       *master;
+       struct spi_controller   *ctlr;
 
        if (!dev)
                return NULL;
 
-       master = kzalloc(size + sizeof(*master), GFP_KERNEL);
-       if (!master)
+       ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
+       if (!ctlr)
                return NULL;
 
-       device_initialize(&master->dev);
-       master->bus_num = -1;
-       master->num_chipselect = 1;
-       master->slave = slave;
+       device_initialize(&ctlr->dev);
+       ctlr->bus_num = -1;
+       ctlr->num_chipselect = 1;
+       ctlr->slave = slave;
        if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
-               master->dev.class = &spi_slave_class;
+               ctlr->dev.class = &spi_slave_class;
        else
-               master->dev.class = &spi_master_class;
-       master->dev.parent = dev;
-       pm_suspend_ignore_children(&master->dev, true);
-       spi_master_set_devdata(master, &master[1]);
+               ctlr->dev.class = &spi_master_class;
+       ctlr->dev.parent = dev;
+       pm_suspend_ignore_children(&ctlr->dev, true);
+       spi_controller_set_devdata(ctlr, &ctlr[1]);
 
-       return master;
+       return ctlr;
 }
 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
 
 #ifdef CONFIG_OF
-static int of_spi_register_master(struct spi_master *master)
+static int of_spi_register_master(struct spi_controller *ctlr)
 {
        int nb, i, *cs;
-       struct device_node *np = master->dev.of_node;
+       struct device_node *np = ctlr->dev.of_node;
 
        if (!np)
                return 0;
 
        nb = of_gpio_named_count(np, "cs-gpios");
-       master->num_chipselect = max_t(int, nb, master->num_chipselect);
+       ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
 
        /* Return error only for an incorrectly formed cs-gpios property */
        if (nb == 0 || nb == -ENOENT)
        else if (nb < 0)
                return nb;
 
-       cs = devm_kzalloc(&master->dev,
-                         sizeof(int) * master->num_chipselect,
+       cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
                          GFP_KERNEL);
-       master->cs_gpios = cs;
+       ctlr->cs_gpios = cs;
 
-       if (!master->cs_gpios)
+       if (!ctlr->cs_gpios)
                return -ENOMEM;
 
-       for (i = 0; i < master->num_chipselect; i++)
+       for (i = 0; i < ctlr->num_chipselect; i++)
                cs[i] = -ENOENT;
 
        for (i = 0; i < nb; i++)
        return 0;
 }
 #else
-static int of_spi_register_master(struct spi_master *master)
+static int of_spi_register_master(struct spi_controller *ctlr)
 {
        return 0;
 }
 #endif
 
 /**
- * spi_register_master - register SPI master controller
- * @master: initialized master, originally from spi_alloc_master()
+ * spi_register_controller - register SPI master or slave controller
+ * @ctlr: initialized master, originally from spi_alloc_master() or
+ *     spi_alloc_slave()
  * Context: can sleep
  *
- * SPI master controllers connect to their drivers using some non-SPI bus,
+ * SPI controllers connect to their drivers using some non-SPI bus,
  * such as the platform bus.  The final stage of probe() in that code
- * includes calling spi_register_master() to hook up to this SPI bus glue.
+ * includes calling spi_register_controller() to hook up to this SPI bus glue.
  *
  * SPI controllers use board specific (often SOC specific) bus numbers,
  * and board-specific addressing for SPI devices combines those numbers
  * chip is at which address.
  *
  * This must be called from context that can sleep.  It returns zero on
- * success, else a negative error code (dropping the master's refcount).
+ * success, else a negative error code (dropping the controller's refcount).
  * After a successful return, the caller is responsible for calling
- * spi_unregister_master().
+ * spi_unregister_controller().
  *
  * Return: zero on success, else a negative error code.
  */
-int spi_register_master(struct spi_master *master)
+int spi_register_controller(struct spi_controller *ctlr)
 {
        static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
-       struct device           *dev = master->dev.parent;
+       struct device           *dev = ctlr->dev.parent;
        struct boardinfo        *bi;
        int                     status = -ENODEV;
        int                     dynamic = 0;
        if (!dev)
                return -ENODEV;
 
-       if (!spi_controller_is_slave(master)) {
-               status = of_spi_register_master(master);
+       if (!spi_controller_is_slave(ctlr)) {
+               status = of_spi_register_master(ctlr);
                if (status)
                        return status;
        }
        /* even if it's just one always-selected device, there must
         * be at least one chipselect
         */
-       if (master->num_chipselect == 0)
+       if (ctlr->num_chipselect == 0)
                return -EINVAL;
 
-       if ((master->bus_num < 0) && master->dev.of_node)
-               master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
+       if ((ctlr->bus_num < 0) && ctlr->dev.of_node)
+               ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
 
        /* convention:  dynamically assigned bus IDs count down from the max */
-       if (master->bus_num < 0) {
+       if (ctlr->bus_num < 0) {
                /* FIXME switch to an IDR based scheme, something like
                 * I2C now uses, so we can't run out of "dynamic" IDs
                 */
-               master->bus_num = atomic_dec_return(&dyn_bus_id);
+               ctlr->bus_num = atomic_dec_return(&dyn_bus_id);
                dynamic = 1;
        }
 
-       INIT_LIST_HEAD(&master->queue);
-       spin_lock_init(&master->queue_lock);
-       spin_lock_init(&master->bus_lock_spinlock);
-       mutex_init(&master->bus_lock_mutex);
-       mutex_init(&master->io_mutex);
-       master->bus_lock_flag = 0;
-       init_completion(&master->xfer_completion);
-       if (!master->max_dma_len)
-               master->max_dma_len = INT_MAX;
+       INIT_LIST_HEAD(&ctlr->queue);
+       spin_lock_init(&ctlr->queue_lock);
+       spin_lock_init(&ctlr->bus_lock_spinlock);
+       mutex_init(&ctlr->bus_lock_mutex);
+       mutex_init(&ctlr->io_mutex);
+       ctlr->bus_lock_flag = 0;
+       init_completion(&ctlr->xfer_completion);
+       if (!ctlr->max_dma_len)
+               ctlr->max_dma_len = INT_MAX;
 
        /* register the device, then userspace will see it.
         * registration fails if the bus ID is in use.
         */
-       dev_set_name(&master->dev, "spi%u", master->bus_num);
-       status = device_add(&master->dev);
+       dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
+       status = device_add(&ctlr->dev);
        if (status < 0)
                goto done;
        dev_dbg(dev, "registered %s %s%s\n",
-                       spi_controller_is_slave(master) ? "slave" : "master",
-                       dev_name(&master->dev), dynamic ? " (dynamic)" : "");
+                       spi_controller_is_slave(ctlr) ? "slave" : "master",
+                       dev_name(&ctlr->dev), dynamic ? " (dynamic)" : "");
 
        /* If we're using a queued driver, start the queue */
-       if (master->transfer)
-               dev_info(dev, "master is unqueued, this is deprecated\n");
+       if (ctlr->transfer)
+               dev_info(dev, "controller is unqueued, this is deprecated\n");
        else {
-               status = spi_master_initialize_queue(master);
+               status = spi_controller_initialize_queue(ctlr);
                if (status) {
-                       device_del(&master->dev);
+                       device_del(&ctlr->dev);
                        goto done;
                }
        }
        /* add statistics */
-       spin_lock_init(&master->statistics.lock);
+       spin_lock_init(&ctlr->statistics.lock);
 
        mutex_lock(&board_lock);
-       list_add_tail(&master->list, &spi_master_list);
+       list_add_tail(&ctlr->list, &spi_controller_list);
        list_for_each_entry(bi, &board_list, list)
-               spi_match_master_to_boardinfo(master, &bi->board_info);
+               spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
        mutex_unlock(&board_lock);
 
        /* Register devices from the device tree and ACPI */
-       of_register_spi_devices(master);
-       acpi_register_spi_devices(master);
+       of_register_spi_devices(ctlr);
+       acpi_register_spi_devices(ctlr);
 done:
        return status;
 }
-EXPORT_SYMBOL_GPL(spi_register_master);
+EXPORT_SYMBOL_GPL(spi_register_controller);
 
 static void devm_spi_unregister(struct device *dev, void *res)
 {
-       spi_unregister_master(*(struct spi_master **)res);
+       spi_unregister_controller(*(struct spi_controller **)res);
 }
 
 /**
- * devm_spi_register_master - register managed SPI master controller
- * @dev:    device managing SPI master
- * @master: initialized master, originally from spi_alloc_master()
+ * devm_spi_register_controller - register managed SPI master or slave
+ *     controller
+ * @dev:    device managing SPI controller
+ * @ctlr: initialized controller, originally from spi_alloc_master() or
+ *     spi_alloc_slave()
  * Context: can sleep
  *
- * Register a SPI device as with spi_register_master() which will
+ * Register a SPI device as with spi_register_controller() which will
  * automatically be unregister
  *
  * Return: zero on success, else a negative error code.
  */
-int devm_spi_register_master(struct device *dev, struct spi_master *master)
+int devm_spi_register_controller(struct device *dev,
+                                struct spi_controller *ctlr)
 {
-       struct spi_master **ptr;
+       struct spi_controller **ptr;
        int ret;
 
        ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
        if (!ptr)
                return -ENOMEM;
 
-       ret = spi_register_master(master);
+       ret = spi_register_controller(ctlr);
        if (!ret) {
-               *ptr = master;
+               *ptr = ctlr;
                devres_add(dev, ptr);
        } else {
                devres_free(ptr);
 
        return ret;
 }
-EXPORT_SYMBOL_GPL(devm_spi_register_master);
+EXPORT_SYMBOL_GPL(devm_spi_register_controller);
 
 static int __unregister(struct device *dev, void *null)
 {
 }
 
 /**
- * spi_unregister_master - unregister SPI master controller
- * @master: the master being unregistered
+ * spi_unregister_controller - unregister SPI master or slave controller
+ * @ctlr: the controller being unregistered
  * Context: can sleep
  *
- * This call is used only by SPI master controller drivers, which are the
+ * This call is used only by SPI controller drivers, which are the
  * only ones directly touching chip registers.
  *
  * This must be called from context that can sleep.
  */
-void spi_unregister_master(struct spi_master *master)
+void spi_unregister_controller(struct spi_controller *ctlr)
 {
        int dummy;
 
-       if (master->queued) {
-               if (spi_destroy_queue(master))
-                       dev_err(&master->dev, "queue remove failed\n");
+       if (ctlr->queued) {
+               if (spi_destroy_queue(ctlr))
+                       dev_err(&ctlr->dev, "queue remove failed\n");
        }
 
        mutex_lock(&board_lock);
-       list_del(&master->list);
+       list_del(&ctlr->list);
        mutex_unlock(&board_lock);
 
-       dummy = device_for_each_child(&master->dev, NULL, __unregister);
-       device_unregister(&master->dev);
+       dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
+       device_unregister(&ctlr->dev);
 }
-EXPORT_SYMBOL_GPL(spi_unregister_master);
+EXPORT_SYMBOL_GPL(spi_unregister_controller);
 
-int spi_master_suspend(struct spi_master *master)
+int spi_controller_suspend(struct spi_controller *ctlr)
 {
        int ret;
 
-       /* Basically no-ops for non-queued masters */
-       if (!master->queued)
+       /* Basically no-ops for non-queued controllers */
+       if (!ctlr->queued)
                return 0;
 
-       ret = spi_stop_queue(master);
+       ret = spi_stop_queue(ctlr);
        if (ret)
-               dev_err(&master->dev, "queue stop failed\n");
+               dev_err(&ctlr->dev, "queue stop failed\n");
 
        return ret;
 }
-EXPORT_SYMBOL_GPL(spi_master_suspend);
+EXPORT_SYMBOL_GPL(spi_controller_suspend);
 
-int spi_master_resume(struct spi_master *master)
+int spi_controller_resume(struct spi_controller *ctlr)
 {
        int ret;
 
-       if (!master->queued)
+       if (!ctlr->queued)
                return 0;
 
-       ret = spi_start_queue(master);
+       ret = spi_start_queue(ctlr);
        if (ret)
-               dev_err(&master->dev, "queue restart failed\n");
+               dev_err(&ctlr->dev, "queue restart failed\n");
 
        return ret;
 }
-EXPORT_SYMBOL_GPL(spi_master_resume);
+EXPORT_SYMBOL_GPL(spi_controller_resume);
 
-static int __spi_master_match(struct device *dev, const void *data)
+static int __spi_controller_match(struct device *dev, const void *data)
 {
-       struct spi_master *m;
+       struct spi_controller *ctlr;
        const u16 *bus_num = data;
 
-       m = container_of(dev, struct spi_master, dev);
-       return m->bus_num == *bus_num;
+       ctlr = container_of(dev, struct spi_controller, dev);
+       return ctlr->bus_num == *bus_num;
 }
 
 /**
  *
  * This call may be used with devices that are registered after
  * arch init time.  It returns a refcounted pointer to the relevant
- * spi_master (which the caller must release), or NULL if there is
+ * spi_controller (which the caller must release), or NULL if there is
  * no such master registered.
  *
  * Return: the SPI master structure on success, else NULL.
  */
-struct spi_master *spi_busnum_to_master(u16 bus_num)
+struct spi_controller *spi_busnum_to_master(u16 bus_num)
 {
        struct device           *dev;
-       struct spi_master       *master = NULL;
+       struct spi_controller   *ctlr = NULL;
 
        dev = class_find_device(&spi_master_class, NULL, &bus_num,
-                               __spi_master_match);
+                               __spi_controller_match);
        if (dev)
-               master = container_of(dev, struct spi_master, dev);
+               ctlr = container_of(dev, struct spi_controller, dev);
        /* reference got in class_find_device */
-       return master;
+       return ctlr;
 }
 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
 
  * Return: the pointer to the allocated data
  *
  * This may get enhanced in the future to allocate from a memory pool
- * of the @spi_device or @spi_master to avoid repeated allocations.
+ * of the @spi_device or @spi_controller to avoid repeated allocations.
  */
 void *spi_res_alloc(struct spi_device *spi,
                    spi_res_release_t release,
 
 /**
  * spi_res_release - release all spi resources for this message
- * @master:  the @spi_master
+ * @ctlr:  the @spi_controller
  * @message: the @spi_message
  */
-void spi_res_release(struct spi_master *master,
-                    struct spi_message *message)
+void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
 {
        struct spi_res *res;
 
                                      struct spi_res, entry);
 
                if (res->release)
-                       res->release(master, message, res->data);
+                       res->release(ctlr, message, res->data);
 
                list_del(&res->entry);
 
 
 /* Core methods for spi_message alterations */
 
-static void __spi_replace_transfers_release(struct spi_master *master,
+static void __spi_replace_transfers_release(struct spi_controller *ctlr,
                                            struct spi_message *msg,
                                            void *res)
 {
 
        /* call extra callback if requested */
        if (rxfer->release)
-               rxfer->release(master, msg, res);
+               rxfer->release(ctlr, msg, res);
 
        /* insert replaced transfers back into the message */
        list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
 }
 EXPORT_SYMBOL_GPL(spi_replace_transfers);
 
-static int __spi_split_transfer_maxsize(struct spi_master *master,
+static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
                                        struct spi_message *msg,
                                        struct spi_transfer **xferp,
                                        size_t maxsize,
        *xferp = &xfers[count - 1];
 
        /* increment statistics counters */
-       SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
+       SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
                                       transfers_split_maxsize);
        SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
                                       transfers_split_maxsize);
  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
  *                              when an individual transfer exceeds a
  *                              certain size
- * @master:    the @spi_master for this transfer
+ * @ctlr:    the @spi_controller for this transfer
  * @msg:   the @spi_message to transform
  * @maxsize:  the maximum when to apply this
  * @gfp: GFP allocation flags
  *
  * Return: status of transformation
  */
-int spi_split_transfers_maxsize(struct spi_master *master,
+int spi_split_transfers_maxsize(struct spi_controller *ctlr,
                                struct spi_message *msg,
                                size_t maxsize,
                                gfp_t gfp)
         */
        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
                if (xfer->len > maxsize) {
-                       ret = __spi_split_transfer_maxsize(
-                               master, msg, &xfer, maxsize, gfp);
+                       ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
+                                                          maxsize, gfp);
                        if (ret)
                                return ret;
                }
 
 /*-------------------------------------------------------------------------*/
 
-/* Core methods for SPI master protocol drivers.  Some of the
+/* Core methods for SPI controller protocol drivers.  Some of the
  * other core methods are currently defined as inline functions.
  */
 
-static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
+static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
+                                       u8 bits_per_word)
 {
-       if (master->bits_per_word_mask) {
+       if (ctlr->bits_per_word_mask) {
                /* Only 32 bits fit in the mask */
                if (bits_per_word > 32)
                        return -EINVAL;
-               if (!(master->bits_per_word_mask &
-                               SPI_BPW_MASK(bits_per_word)))
+               if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
                        return -EINVAL;
        }
 
                (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
                return -EINVAL;
        /* help drivers fail *cleanly* when they need options
-        * that aren't supported with their current master
+        * that aren't supported with their current controller
         */
-       bad_bits = spi->mode & ~spi->master->mode_bits;
+       bad_bits = spi->mode & ~spi->controller->mode_bits;
        ugly_bits = bad_bits &
                    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
        if (ugly_bits) {
        if (!spi->bits_per_word)
                spi->bits_per_word = 8;
 
-       status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
+       status = __spi_validate_bits_per_word(spi->controller,
+                                             spi->bits_per_word);
        if (status)
                return status;
 
        if (!spi->max_speed_hz)
-               spi->max_speed_hz = spi->master->max_speed_hz;
+               spi->max_speed_hz = spi->controller->max_speed_hz;
 
-       if (spi->master->setup)
-               status = spi->master->setup(spi);
+       if (spi->controller->setup)
+               status = spi->controller->setup(spi);
 
        spi_set_cs(spi, false);
 
 
 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
 {
-       struct spi_master *master = spi->master;
+       struct spi_controller *ctlr = spi->controller;
        struct spi_transfer *xfer;
        int w_size;
 
         * either MOSI or MISO is missing.  They can also be caused by
         * software limitations.
         */
-       if ((master->flags & SPI_MASTER_HALF_DUPLEX)
-                       || (spi->mode & SPI_3WIRE)) {
-               unsigned flags = master->flags;
+       if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
+           (spi->mode & SPI_3WIRE)) {
+               unsigned flags = ctlr->flags;
 
                list_for_each_entry(xfer, &message->transfers, transfer_list) {
                        if (xfer->rx_buf && xfer->tx_buf)
                                return -EINVAL;
-                       if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
+                       if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
                                return -EINVAL;
-                       if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
+                       if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
                                return -EINVAL;
                }
        }
                if (!xfer->speed_hz)
                        xfer->speed_hz = spi->max_speed_hz;
                if (!xfer->speed_hz)
-                       xfer->speed_hz = master->max_speed_hz;
+                       xfer->speed_hz = ctlr->max_speed_hz;
 
-               if (master->max_speed_hz &&
-                   xfer->speed_hz > master->max_speed_hz)
-                       xfer->speed_hz = master->max_speed_hz;
+               if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
+                       xfer->speed_hz = ctlr->max_speed_hz;
 
-               if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
+               if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
                        return -EINVAL;
 
                /*
                if (xfer->len % w_size)
                        return -EINVAL;
 
-               if (xfer->speed_hz && master->min_speed_hz &&
-                   xfer->speed_hz < master->min_speed_hz)
+               if (xfer->speed_hz && ctlr->min_speed_hz &&
+                   xfer->speed_hz < ctlr->min_speed_hz)
                        return -EINVAL;
 
                if (xfer->tx_buf && !xfer->tx_nbits)
 
 static int __spi_async(struct spi_device *spi, struct spi_message *message)
 {
-       struct spi_master *master = spi->master;
+       struct spi_controller *ctlr = spi->controller;
 
        message->spi = spi;
 
-       SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
+       SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
 
        trace_spi_message_submit(message);
 
-       return master->transfer(spi, message);
+       return ctlr->transfer(spi, message);
 }
 
 /**
  */
 int spi_async(struct spi_device *spi, struct spi_message *message)
 {
-       struct spi_master *master = spi->master;
+       struct spi_controller *ctlr = spi->controller;
        int ret;
        unsigned long flags;
 
        if (ret != 0)
                return ret;
 
-       spin_lock_irqsave(&master->bus_lock_spinlock, flags);
+       spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
-       if (master->bus_lock_flag)
+       if (ctlr->bus_lock_flag)
                ret = -EBUSY;
        else
                ret = __spi_async(spi, message);
 
-       spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
+       spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
 
        return ret;
 }
  */
 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
 {
-       struct spi_master *master = spi->master;
+       struct spi_controller *ctlr = spi->controller;
        int ret;
        unsigned long flags;
 
        if (ret != 0)
                return ret;
 
-       spin_lock_irqsave(&master->bus_lock_spinlock, flags);
+       spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
        ret = __spi_async(spi, message);
 
-       spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
+       spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
 
        return ret;
 
                   struct spi_flash_read_message *msg)
 
 {
-       struct spi_master *master = spi->master;
+       struct spi_controller *master = spi->controller;
        struct device *rx_dev = NULL;
        int ret;
 
 
 /*-------------------------------------------------------------------------*/
 
-/* Utility methods for SPI master protocol drivers, layered on
+/* Utility methods for SPI protocol drivers, layered on
  * top of the core.  Some other utility methods are defined as
  * inline functions.
  */
 {
        DECLARE_COMPLETION_ONSTACK(done);
        int status;
-       struct spi_master *master = spi->master;
+       struct spi_controller *ctlr = spi->controller;
        unsigned long flags;
 
        status = __spi_validate(spi, message);
        message->context = &done;
        message->spi = spi;
 
-       SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
+       SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
 
        /* If we're not using the legacy transfer method then we will
         * This code would be less tricky if we could remove the
         * support for driver implemented message queues.
         */
-       if (master->transfer == spi_queued_transfer) {
-               spin_lock_irqsave(&master->bus_lock_spinlock, flags);
+       if (ctlr->transfer == spi_queued_transfer) {
+               spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
                trace_spi_message_submit(message);
 
                status = __spi_queued_transfer(spi, message, false);
 
-               spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
+               spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
        } else {
                status = spi_async_locked(spi, message);
        }
                /* Push out the messages in the calling context if we
                 * can.
                 */
-               if (master->transfer == spi_queued_transfer) {
-                       SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
+               if (ctlr->transfer == spi_queued_transfer) {
+                       SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
                                                       spi_sync_immediate);
                        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
                                                       spi_sync_immediate);
-                       __spi_pump_messages(master, false);
+                       __spi_pump_messages(ctlr, false);
                }
 
                wait_for_completion(&done);
 {
        int ret;
 
-       mutex_lock(&spi->master->bus_lock_mutex);
+       mutex_lock(&spi->controller->bus_lock_mutex);
        ret = __spi_sync(spi, message);
-       mutex_unlock(&spi->master->bus_lock_mutex);
+       mutex_unlock(&spi->controller->bus_lock_mutex);
 
        return ret;
 }
 
 /**
  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
- * @master: SPI bus master that should be locked for exclusive bus access
+ * @ctlr: SPI bus master that should be locked for exclusive bus access
  * Context: can sleep
  *
  * This call may only be used from a context that may sleep.  The sleep
  *
  * Return: always zero.
  */
-int spi_bus_lock(struct spi_master *master)
+int spi_bus_lock(struct spi_controller *ctlr)
 {
        unsigned long flags;
 
-       mutex_lock(&master->bus_lock_mutex);
+       mutex_lock(&ctlr->bus_lock_mutex);
 
-       spin_lock_irqsave(&master->bus_lock_spinlock, flags);
-       master->bus_lock_flag = 1;
-       spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
+       spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
+       ctlr->bus_lock_flag = 1;
+       spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
 
        /* mutex remains locked until spi_bus_unlock is called */
 
 
 /**
  * spi_bus_unlock - release the lock for exclusive SPI bus usage
- * @master: SPI bus master that was locked for exclusive bus access
+ * @ctlr: SPI bus master that was locked for exclusive bus access
  * Context: can sleep
  *
  * This call may only be used from a context that may sleep.  The sleep
  *
  * Return: always zero.
  */
-int spi_bus_unlock(struct spi_master *master)
+int spi_bus_unlock(struct spi_controller *ctlr)
 {
-       master->bus_lock_flag = 0;
+       ctlr->bus_lock_flag = 0;
 
-       mutex_unlock(&master->bus_lock_mutex);
+       mutex_unlock(&ctlr->bus_lock_mutex);
 
        return 0;
 }
        return dev ? to_spi_device(dev) : NULL;
 }
 
-static int __spi_of_master_match(struct device *dev, const void *data)
+static int __spi_of_controller_match(struct device *dev, const void *data)
 {
        return dev->of_node == data;
 }
 
-/* the spi masters are not using spi_bus, so we find it with another way */
-static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
+/* the spi controllers are not using spi_bus, so we find it with another way */
+static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
 {
        struct device *dev;
 
        dev = class_find_device(&spi_master_class, NULL, node,
-                               __spi_of_master_match);
+                               __spi_of_controller_match);
        if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
                dev = class_find_device(&spi_slave_class, NULL, node,
-                                       __spi_of_master_match);
+                                       __spi_of_controller_match);
        if (!dev)
                return NULL;
 
        /* reference got in class_find_device */
-       return container_of(dev, struct spi_master, dev);
+       return container_of(dev, struct spi_controller, dev);
 }
 
 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
                         void *arg)
 {
        struct of_reconfig_data *rd = arg;
-       struct spi_master *master;
+       struct spi_controller *ctlr;
        struct spi_device *spi;
 
        switch (of_reconfig_get_state_change(action, arg)) {
        case OF_RECONFIG_CHANGE_ADD:
-               master = of_find_spi_master_by_node(rd->dn->parent);
-               if (master == NULL)
+               ctlr = of_find_spi_controller_by_node(rd->dn->parent);
+               if (ctlr == NULL)
                        return NOTIFY_OK;       /* not for us */
 
                if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
-                       put_device(&master->dev);
+                       put_device(&ctlr->dev);
                        return NOTIFY_OK;
                }
 
-               spi = of_register_spi_device(master, rd->dn);
-               put_device(&master->dev);
+               spi = of_register_spi_device(ctlr, rd->dn);
+               put_device(&ctlr->dev);
 
                if (IS_ERR(spi)) {
                        pr_err("%s: failed to create for '%s'\n",
 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
 
 #if IS_ENABLED(CONFIG_ACPI)
-static int spi_acpi_master_match(struct device *dev, const void *data)
+static int spi_acpi_controller_match(struct device *dev, const void *data)
 {
        return ACPI_COMPANION(dev->parent) == data;
 }
        return ACPI_COMPANION(dev) == data;
 }
 
-static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
+static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
 {
        struct device *dev;
 
        dev = class_find_device(&spi_master_class, NULL, adev,
-                               spi_acpi_master_match);
+                               spi_acpi_controller_match);
        if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
                dev = class_find_device(&spi_slave_class, NULL, adev,
-                                       spi_acpi_master_match);
+                                       spi_acpi_controller_match);
        if (!dev)
                return NULL;
 
-       return container_of(dev, struct spi_master, dev);
+       return container_of(dev, struct spi_controller, dev);
 }
 
 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
                           void *arg)
 {
        struct acpi_device *adev = arg;
-       struct spi_master *master;
+       struct spi_controller *ctlr;
        struct spi_device *spi;
 
        switch (value) {
        case ACPI_RECONFIG_DEVICE_ADD:
-               master = acpi_spi_find_master_by_adev(adev->parent);
-               if (!master)
+               ctlr = acpi_spi_find_controller_by_adev(adev->parent);
+               if (!ctlr)
                        break;
 
-               acpi_register_spi_device(master, adev);
-               put_device(&master->dev);
+               acpi_register_spi_device(ctlr, adev);
+               put_device(&ctlr->dev);
                break;
        case ACPI_RECONFIG_DEVICE_REMOVE:
                if (!acpi_device_enumerated(adev))
 
 
 struct dma_chan;
 struct property_entry;
-struct spi_master;
+struct spi_controller;
 struct spi_transfer;
 struct spi_flash_read_message;
 
 
 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
                                       struct spi_transfer *xfer,
-                                      struct spi_master *master);
+                                      struct spi_controller *ctlr);
 
 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)       \
        do {                                                    \
        SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
 
 /**
- * struct spi_device - Master side proxy for an SPI slave device
+ * struct spi_device - Controller side proxy for an SPI slave device
  * @dev: Driver model representation of the device.
- * @master: SPI controller used with the device.
+ * @controller: SPI controller used with the device.
+ * @master: Copy of controller, for backwards compatibility.
  * @max_speed_hz: Maximum clock rate to be used with this chip
  *     (on this board); may be changed by the device's driver.
  *     The spi_transfer.speed_hz can override this for each transfer.
- * @chip_select: Chipselect, distinguishing chips handled by @master.
+ * @chip_select: Chipselect, distinguishing chips handled by @controller.
  * @mode: The spi mode defines how data is clocked out and in.
  *     This may be changed by the device's driver.
  *     The "active low" default for chipselect mode can be overridden
  */
 struct spi_device {
        struct device           dev;
-       struct spi_master       *master;
+       struct spi_controller   *controller;
+       struct spi_controller   *master;        /* compatibility layer */
        u32                     max_speed_hz;
        u8                      chip_select;
        u8                      bits_per_word;
                put_device(&spi->dev);
 }
 
-/* ctldata is for the bus_master driver's runtime state */
+/* ctldata is for the bus_controller driver's runtime state */
 static inline void *spi_get_ctldata(struct spi_device *spi)
 {
        return spi->controller_state;
                        spi_unregister_driver)
 
 /**
- * struct spi_master - interface to SPI master controller
+ * struct spi_controller - interface to SPI master or slave controller
  * @dev: device interface to this driver
- * @list: link with the global spi_master list
+ * @list: link with the global spi_controller list
  * @bus_num: board-specific (and often SOC-specific) identifier for a
  *     given SPI controller.
  * @num_chipselect: chipselects are used to distinguish individual
  *     the device whose settings are being modified.
  * @transfer: adds a message to the controller's transfer queue.
  * @cleanup: frees controller-specific state
- * @can_dma: determine whether this master supports DMA
- * @queued: whether this master is providing an internal message queue
+ * @can_dma: determine whether this controller supports DMA
+ * @queued: whether this controller is providing an internal message queue
  * @kworker: thread struct for message pump
  * @kworker_task: pointer to task for message pump kworker thread
  * @pump_messages: work struct for scheduling work to the message pump
  * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
  *     number. Any individual value may be -ENOENT for CS lines that
  *     are not GPIOs (driven by the SPI controller itself).
- * @statistics: statistics for the spi_master
+ * @statistics: statistics for the spi_controller
  * @dma_tx: DMA transmit channel
  * @dma_rx: DMA receive channel
  * @dummy_rx: dummy receive buffer for full-duplex devices
  *     what Linux expects, this optional hook can be used to translate
  *     between the two.
  *
- * Each SPI master controller can communicate with one or more @spi_device
+ * Each SPI controller can communicate with one or more @spi_device
  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
  * but not chip select signals.  Each device may be configured to use a
  * different clock rate, since those shared signals are ignored unless
  * an SPI slave device.  For each such message it queues, it calls the
  * message's completion function when the transaction completes.
  */
-struct spi_master {
+struct spi_controller {
        struct device   dev;
 
        struct list_head list;
 
        /* other constraints relevant to this driver */
        u16                     flags;
-#define SPI_MASTER_HALF_DUPLEX BIT(0)          /* can't do full duplex */
-#define SPI_MASTER_NO_RX       BIT(1)          /* can't do buffer read */
-#define SPI_MASTER_NO_TX       BIT(2)          /* can't do buffer write */
-#define SPI_MASTER_MUST_RX      BIT(3)         /* requires rx */
-#define SPI_MASTER_MUST_TX      BIT(4)         /* requires tx */
-#define SPI_MASTER_GPIO_SS      BIT(5)         /* GPIO CS must select slave */
+#define SPI_CONTROLLER_HALF_DUPLEX     BIT(0)  /* can't do full duplex */
+#define SPI_CONTROLLER_NO_RX           BIT(1)  /* can't do buffer read */
+#define SPI_CONTROLLER_NO_TX           BIT(2)  /* can't do buffer write */
+#define SPI_CONTROLLER_MUST_RX         BIT(3)  /* requires rx */
+#define SPI_CONTROLLER_MUST_TX         BIT(4)  /* requires tx */
+
+#define SPI_MASTER_GPIO_SS             BIT(5)  /* GPIO CS must select slave */
 
        /* flag indicating this is an SPI slave controller */
        bool                    slave;
         *   any other request management
         * + To a given spi_device, message queueing is pure fifo
         *
-        * + The master's main job is to process its message queue,
-        *   selecting a chip then transferring data
+        * + The controller's main job is to process its message queue,
+        *   selecting a chip (for masters), then transferring data
         * + If there are multiple spi_device children, the i/o queue
         *   arbitration algorithm is unspecified (round robin, fifo,
         *   priority, reservations, preemption, etc)
        int                     (*transfer)(struct spi_device *spi,
                                                struct spi_message *mesg);
 
-       /* called on release() to free memory provided by spi_master */
+       /* called on release() to free memory provided by spi_controller */
        void                    (*cleanup)(struct spi_device *spi);
 
        /*
         * not modify or store xfer and dma_tx and dma_rx must be set
         * while the device is prepared.
         */
-       bool                    (*can_dma)(struct spi_master *master,
+       bool                    (*can_dma)(struct spi_controller *ctlr,
                                           struct spi_device *spi,
                                           struct spi_transfer *xfer);
 
        /*
         * These hooks are for drivers that want to use the generic
-        * master transfer queueing mechanism. If these are used, the
+        * controller transfer queueing mechanism. If these are used, the
         * transfer() function above must NOT be specified by the driver.
         * Over time we expect SPI drivers to be phased over to this API.
         */
        struct completion               xfer_completion;
        size_t                          max_dma_len;
 
-       int (*prepare_transfer_hardware)(struct spi_master *master);
-       int (*transfer_one_message)(struct spi_master *master,
+       int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
+       int (*transfer_one_message)(struct spi_controller *ctlr,
                                    struct spi_message *mesg);
-       int (*unprepare_transfer_hardware)(struct spi_master *master);
-       int (*prepare_message)(struct spi_master *master,
+       int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
+       int (*prepare_message)(struct spi_controller *ctlr,
                               struct spi_message *message);
-       int (*unprepare_message)(struct spi_master *master,
+       int (*unprepare_message)(struct spi_controller *ctlr,
                                 struct spi_message *message);
-       int (*slave_abort)(struct spi_master *spi);
+       int (*slave_abort)(struct spi_controller *ctlr);
        int (*spi_flash_read)(struct  spi_device *spi,
                              struct spi_flash_read_message *msg);
        bool (*spi_flash_can_dma)(struct spi_device *spi,
         * of transfer_one_message() provied by the core.
         */
        void (*set_cs)(struct spi_device *spi, bool enable);
-       int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
+       int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
                            struct spi_transfer *transfer);
-       void (*handle_err)(struct spi_master *master,
+       void (*handle_err)(struct spi_controller *ctlr,
                           struct spi_message *message);
 
        /* gpio chip select */
        void                    *dummy_rx;
        void                    *dummy_tx;
 
-       int (*fw_translate_cs)(struct spi_master *master, unsigned cs);
+       int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
 };
 
-static inline void *spi_master_get_devdata(struct spi_master *master)
+static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
 {
-       return dev_get_drvdata(&master->dev);
+       return dev_get_drvdata(&ctlr->dev);
 }
 
-static inline void spi_master_set_devdata(struct spi_master *master, void *data)
+static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
+                                             void *data)
 {
-       dev_set_drvdata(&master->dev, data);
+       dev_set_drvdata(&ctlr->dev, data);
 }
 
-static inline struct spi_master *spi_master_get(struct spi_master *master)
+static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
 {
-       if (!master || !get_device(&master->dev))
+       if (!ctlr || !get_device(&ctlr->dev))
                return NULL;
-       return master;
+       return ctlr;
 }
 
-static inline void spi_master_put(struct spi_master *master)
+static inline void spi_controller_put(struct spi_controller *ctlr)
 {
-       if (master)
-               put_device(&master->dev);
+       if (ctlr)
+               put_device(&ctlr->dev);
 }
 
-static inline bool spi_controller_is_slave(struct spi_master *ctlr)
+static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
 {
        return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
 }
 
 /* PM calls that need to be issued by the driver */
-extern int spi_master_suspend(struct spi_master *master);
-extern int spi_master_resume(struct spi_master *master);
+extern int spi_controller_suspend(struct spi_controller *ctlr);
+extern int spi_controller_resume(struct spi_controller *ctlr);
 
 /* Calls the driver make to interact with the message queue */
-extern struct spi_message *spi_get_next_queued_message(struct spi_master *master);
-extern void spi_finalize_current_message(struct spi_master *master);
-extern void spi_finalize_current_transfer(struct spi_master *master);
+extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
+extern void spi_finalize_current_message(struct spi_controller *ctlr);
+extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
 
-/* the spi driver core manages memory for the spi_master classdev */
-extern struct spi_master *__spi_alloc_controller(struct device *host,
-                                                unsigned int size, bool slave);
+/* the spi driver core manages memory for the spi_controller classdev */
+extern struct spi_controller *__spi_alloc_controller(struct device *host,
+                                               unsigned int size, bool slave);
 
-static inline struct spi_master *spi_alloc_master(struct device *host,
-                                                 unsigned int size)
+static inline struct spi_controller *spi_alloc_master(struct device *host,
+                                                     unsigned int size)
 {
        return __spi_alloc_controller(host, size, false);
 }
 
-static inline struct spi_master *spi_alloc_slave(struct device *host,
-                                                unsigned int size)
+static inline struct spi_controller *spi_alloc_slave(struct device *host,
+                                                    unsigned int size)
 {
        if (!IS_ENABLED(CONFIG_SPI_SLAVE))
                return NULL;
        return __spi_alloc_controller(host, size, true);
 }
 
-extern int spi_register_master(struct spi_master *master);
-extern int devm_spi_register_master(struct device *dev,
-                                   struct spi_master *master);
-extern void spi_unregister_master(struct spi_master *master);
+extern int spi_register_controller(struct spi_controller *ctlr);
+extern int devm_spi_register_controller(struct device *dev,
+                                       struct spi_controller *ctlr);
+extern void spi_unregister_controller(struct spi_controller *ctlr);
 
-extern struct spi_master *spi_busnum_to_master(u16 busnum);
+extern struct spi_controller *spi_busnum_to_master(u16 busnum);
 
 /*
  * SPI resource management while processing a SPI message
  */
 
-typedef void (*spi_res_release_t)(struct spi_master *master,
+typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
                                  struct spi_message *msg,
                                  void *res);
 
 extern void spi_res_add(struct spi_message *message, void *res);
 extern void spi_res_free(void *res);
 
-extern void spi_res_release(struct spi_master *master,
+extern void spi_res_release(struct spi_controller *ctlr,
                            struct spi_message *message);
 
 /*---------------------------------------------------------------------------*/
 
        /* for optional use by whatever driver currently owns the
         * spi_message ...  between calls to spi_async and then later
-        * complete(), that's the spi_master controller driver.
+        * complete(), that's the spi_controller controller driver.
         */
        struct list_head        queue;
        void                    *state;
 static inline size_t
 spi_max_message_size(struct spi_device *spi)
 {
-       struct spi_master *master = spi->master;
-       if (!master->max_message_size)
+       struct spi_controller *ctlr = spi->controller;
+
+       if (!ctlr->max_message_size)
                return SIZE_MAX;
-       return master->max_message_size(spi);
+       return ctlr->max_message_size(spi);
 }
 
 static inline size_t
 spi_max_transfer_size(struct spi_device *spi)
 {
-       struct spi_master *master = spi->master;
+       struct spi_controller *ctlr = spi->controller;
        size_t tr_max = SIZE_MAX;
        size_t msg_max = spi_max_message_size(spi);
 
-       if (master->max_transfer_size)
-               tr_max = master->max_transfer_size(spi);
+       if (ctlr->max_transfer_size)
+               tr_max = ctlr->max_transfer_size(spi);
 
        /* transfer size limit must not be greater than messsage size limit */
        return min(tr_max, msg_max);
 /* SPI transfer replacement methods which make use of spi_res */
 
 struct spi_replaced_transfers;
-typedef void (*spi_replaced_release_t)(struct spi_master *master,
+typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
                                       struct spi_message *msg,
                                       struct spi_replaced_transfers *res);
 /**
 
 /* SPI transfer transformation methods */
 
-extern int spi_split_transfers_maxsize(struct spi_master *master,
+extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
                                       struct spi_message *msg,
                                       size_t maxsize,
                                       gfp_t gfp);
 
 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
-extern int spi_bus_lock(struct spi_master *master);
-extern int spi_bus_unlock(struct spi_master *master);
+extern int spi_bus_lock(struct spi_controller *ctlr);
+extern int spi_bus_unlock(struct spi_controller *ctlr);
 
 /**
  * spi_sync_transfer - synchronous SPI data transfer
 /* SPI core interface for flash read support */
 static inline bool spi_flash_read_supported(struct spi_device *spi)
 {
-       return spi->master->spi_flash_read &&
-              (!spi->master->flash_read_supported ||
-              spi->master->flash_read_supported(spi));
+       return spi->controller->spi_flash_read &&
+              (!spi->controller->flash_read_supported ||
+              spi->controller->flash_read_supported(spi));
 }
 
 int spi_flash_read(struct spi_device *spi,
  * @irq: Initializes spi_device.irq; depends on how the board is wired.
  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
  *     from the chip datasheet and board-specific signal quality issues.
- * @bus_num: Identifies which spi_master parents the spi_device; unused
+ * @bus_num: Identifies which spi_controller parents the spi_device; unused
  *     by spi_new_device(), and otherwise depends on board wiring.
  * @chip_select: Initializes spi_device.chip_select; depends on how
  *     the board is wired.
 
 
        /* bus_num is board specific and matches the bus_num of some
-        * spi_master that will probably be registered later.
+        * spi_controller that will probably be registered later.
         *
         * chip_select reflects how this chip is wired to that master;
         * it's less than num_chipselect.
 /* If you're hotplugging an adapter with devices (parport, usb, etc)
  * use spi_new_device() to describe each device.  You can also call
  * spi_unregister_device() to start making that device vanish, but
- * normally that would be handled by spi_unregister_master().
+ * normally that would be handled by spi_unregister_controller().
  *
  * You can also use spi_alloc_device() and spi_add_device() to use a two
  * stage registration sequence for each spi_device.  This gives the caller
  * be defined using the board info.
  */
 extern struct spi_device *
-spi_alloc_device(struct spi_master *master);
+spi_alloc_device(struct spi_controller *ctlr);
 
 extern int
 spi_add_device(struct spi_device *spi);
 
 extern struct spi_device *
-spi_new_device(struct spi_master *, struct spi_board_info *);
+spi_new_device(struct spi_controller *, struct spi_board_info *);
 
 extern void spi_unregister_device(struct spi_device *spi);
 
 spi_get_device_id(const struct spi_device *sdev);
 
 static inline bool
-spi_transfer_is_last(struct spi_master *master, struct spi_transfer *xfer)
+spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
 {
-       return list_is_last(&xfer->transfer_list, &master->cur_msg->transfers);
+       return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
 }
 
+
+/* Compatibility layer */
+#define spi_master                     spi_controller
+
+#define SPI_MASTER_HALF_DUPLEX         SPI_CONTROLLER_HALF_DUPLEX
+#define SPI_MASTER_NO_RX               SPI_CONTROLLER_NO_RX
+#define SPI_MASTER_NO_TX               SPI_CONTROLLER_NO_TX
+#define SPI_MASTER_MUST_RX             SPI_CONTROLLER_MUST_RX
+#define SPI_MASTER_MUST_TX             SPI_CONTROLLER_MUST_TX
+
+#define spi_master_get_devdata(_ctlr)  spi_controller_get_devdata(_ctlr)
+#define spi_master_set_devdata(_ctlr, _data)   \
+       spi_controller_set_devdata(_ctlr, _data)
+#define spi_master_get(_ctlr)          spi_controller_get(_ctlr)
+#define spi_master_put(_ctlr)          spi_controller_put(_ctlr)
+#define spi_master_suspend(_ctlr)      spi_controller_suspend(_ctlr)
+#define spi_master_resume(_ctlr)       spi_controller_resume(_ctlr)
+
+#define spi_register_master(_ctlr)     spi_register_controller(_ctlr)
+#define devm_spi_register_master(_dev, _ctlr) \
+       devm_spi_register_controller(_dev, _ctlr)
+#define spi_unregister_master(_ctlr)   spi_unregister_controller(_ctlr)
+
 #endif /* __LINUX_SPI_H */