}
 
 
+/*
+ * uhm_pipe_setup
+ * helper function to customize the process used
+ * to collect the core in userspace.  Specifically
+ * it sets up a pipe and installs it as fd 0 (stdin)
+ * for the process.  Returns 0 on success, or
+ * PTR_ERR on failure.
+ * Note that it also sets the core limit to 1.  This
+ * is a special value that we use to trap recursive
+ * core dumps
+ */
+static int umh_pipe_setup(struct subprocess_info *info)
+{
+       struct file *rp, *wp;
+       struct fdtable *fdt;
+       struct coredump_params *cp = (struct coredump_params *)info->data;
+       struct files_struct *cf = current->files;
+
+       wp = create_write_pipe(0);
+       if (IS_ERR(wp))
+               return PTR_ERR(wp);
+
+       rp = create_read_pipe(wp, 0);
+       if (IS_ERR(rp)) {
+               free_write_pipe(wp);
+               return PTR_ERR(rp);
+       }
+
+       cp->file = wp;
+
+       sys_close(0);
+       fd_install(0, rp);
+       spin_lock(&cf->file_lock);
+       fdt = files_fdtable(cf);
+       FD_SET(0, fdt->open_fds);
+       FD_CLR(0, fdt->close_on_exec);
+       spin_unlock(&cf->file_lock);
+
+       /* and disallow core files too */
+       current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
+
+       return 0;
+}
+
 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
 {
        struct core_state core_state;
                goto fail_unlock;
 
        if (ispipe) {
-               if (cprm.limit == 0) {
+               if (cprm.limit == 1) {
                        /*
                         * Normally core limits are irrelevant to pipes, since
                         * we're not writing to the file system, but we use
-                        * cprm.limit of 0 here as a speacial value. Any
-                        * non-zero limit gets set to RLIM_INFINITY below, but
+                        * cprm.limit of 1 here as a speacial value. Any
+                        * non-1 limit gets set to RLIM_INFINITY below, but
                         * a limit of 0 skips the dump.  This is a consistent
                         * way to catch recursive crashes.  We can still crash
-                        * if the core_pattern binary sets RLIM_CORE =  !0
+                        * if the core_pattern binary sets RLIM_CORE =  !1
                         * but it runs as root, and can do lots of stupid things
                         * Note that we use task_tgid_vnr here to grab the pid
                         * of the process group leader.  That way we get the
                         * core_pattern process dies.
                         */
                        printk(KERN_WARNING
-                               "Process %d(%s) has RLIMIT_CORE set to 0\n",
+                               "Process %d(%s) has RLIMIT_CORE set to 1\n",
                                task_tgid_vnr(current), current->comm);
                        printk(KERN_WARNING "Aborting core\n");
                        goto fail_unlock;
                cprm.limit = RLIM_INFINITY;
 
                /* SIGPIPE can happen, but it's just never processed */
-               if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
-                               &cprm.file)) {
+               cprm.file = NULL;
+               if (call_usermodehelper_fns(helper_argv[0], helper_argv, NULL,
+                                           UMH_WAIT_EXEC, umh_pipe_setup,
+                                           NULL, &cprm)) {
+                       if (cprm.file)
+                               filp_close(cprm.file, NULL);
+
                        printk(KERN_INFO "Core dump to %s pipe failed\n",
                               corename);
                        goto fail_dropcount;
 
        char **envp;
        enum umh_wait wait;
        int retval;
-       struct file *stdin;
        int (*init)(struct subprocess_info *info);
        void (*cleanup)(struct subprocess_info *info);
        void *data;
 /* Set various pieces of state into the subprocess_info structure */
 void call_usermodehelper_setkeys(struct subprocess_info *info,
                                 struct key *session_keyring);
-int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info,
-                                 struct file **filp);
 void call_usermodehelper_setfns(struct subprocess_info *info,
                    int (*init)(struct subprocess_info *info),
                    void (*cleanup)(struct subprocess_info *info),
 
 extern void usermodehelper_init(void);
 
-struct file;
-extern int call_usermodehelper_pipe(char *path, char *argv[], char *envp[],
-                                   struct file **filp);
-
 extern int usermodehelper_disable(void);
 extern void usermodehelper_enable(void);
 
 
        commit_creds(sub_info->cred);
        sub_info->cred = NULL;
 
-       /* Install input pipe when needed */
-       if (sub_info->stdin) {
-               struct files_struct *f = current->files;
-               struct fdtable *fdt;
-               /* no races because files should be private here */
-               sys_close(0);
-               fd_install(0, sub_info->stdin);
-               spin_lock(&f->file_lock);
-               fdt = files_fdtable(f);
-               FD_SET(0, fdt->open_fds);
-               FD_CLR(0, fdt->close_on_exec);
-               spin_unlock(&f->file_lock);
-
-               /* and disallow core files too */
-               current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0};
-       }
-
        /* We can run anywhere, unlike our parent keventd(). */
        set_cpus_allowed_ptr(current, cpu_all_mask);
 
 }
 EXPORT_SYMBOL(call_usermodehelper_setfns);
 
-/**
- * call_usermodehelper_stdinpipe - set up a pipe to be used for stdin
- * @sub_info: a subprocess_info returned by call_usermodehelper_setup
- * @filp: set to the write-end of a pipe
- *
- * This constructs a pipe, and sets the read end to be the stdin of the
- * subprocess, and returns the write-end in *@filp.
- */
-int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info,
-                                 struct file **filp)
-{
-       struct file *f;
-
-       f = create_write_pipe(0);
-       if (IS_ERR(f))
-               return PTR_ERR(f);
-       *filp = f;
-
-       f = create_read_pipe(f, 0);
-       if (IS_ERR(f)) {
-               free_write_pipe(*filp);
-               return PTR_ERR(f);
-       }
-       sub_info->stdin = f;
-
-       return 0;
-}
-EXPORT_SYMBOL(call_usermodehelper_stdinpipe);
-
 /**
  * call_usermodehelper_exec - start a usermode application
  * @sub_info: information about the subprocessa
 }
 EXPORT_SYMBOL(call_usermodehelper_exec);
 
-/**
- * call_usermodehelper_pipe - call a usermode helper process with a pipe stdin
- * @path: path to usermode executable
- * @argv: arg vector for process
- * @envp: environment for process
- * @filp: set to the write-end of a pipe
- *
- * This is a simple wrapper which executes a usermode-helper function
- * with a pipe as stdin.  It is implemented entirely in terms of
- * lower-level call_usermodehelper_* functions.
- */
-int call_usermodehelper_pipe(char *path, char **argv, char **envp,
-                            struct file **filp)
-{
-       struct subprocess_info *sub_info;
-       int ret;
-
-       sub_info = call_usermodehelper_setup(path, argv, envp,
-                                            GFP_KERNEL);
-       if (sub_info == NULL)
-               return -ENOMEM;
-
-       ret = call_usermodehelper_stdinpipe(sub_info, filp);
-       if (ret < 0) {
-               call_usermodehelper_freeinfo(sub_info);
-               return ret;
-       }
-
-       ret = call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);
-       if (ret < 0)    /* Failed to execute helper, close pipe */
-               filp_close(*filp, NULL);
-
-       return ret;
-}
-EXPORT_SYMBOL(call_usermodehelper_pipe);
-
 void __init usermodehelper_init(void)
 {
        khelper_wq = create_singlethread_workqueue("khelper");