#include "delayed-ref.h"
 #include "locking.h"
 
-enum merge_mode {
-       MERGE_IDENTICAL_KEYS = 1,
-       MERGE_IDENTICAL_PARENTS,
-};
-
 /* Just an arbitrary number so we can be sure this happened */
 #define BACKREF_FOUND_SHARED 6
 
  * this structure records all encountered refs on the way up to the root
  */
 struct prelim_ref {
-       struct list_head list;
+       struct rb_node rbnode;
        u64 root_id;
        struct btrfs_key key_for_search;
        int level;
        u64 wanted_disk_byte;
 };
 
+struct preftree {
+       struct rb_root root;
+};
+
+#define PREFTREE_INIT  { .root = RB_ROOT }
+
+struct preftrees {
+       struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
+       struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
+       struct preftree indirect_missing_keys;
+};
+
 static struct kmem_cache *btrfs_prelim_ref_cache;
 
 int __init btrfs_prelim_ref_init(void)
        kmem_cache_destroy(btrfs_prelim_ref_cache);
 }
 
+static void free_pref(struct prelim_ref *ref)
+{
+       kmem_cache_free(btrfs_prelim_ref_cache, ref);
+}
+
+/*
+ * Return 0 when both refs are for the same block (and can be merged).
+ * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
+ * indicates a 'higher' block.
+ */
+static int prelim_ref_compare(struct prelim_ref *ref1,
+                             struct prelim_ref *ref2)
+{
+       if (ref1->level < ref2->level)
+               return -1;
+       if (ref1->level > ref2->level)
+               return 1;
+       if (ref1->root_id < ref2->root_id)
+               return -1;
+       if (ref1->root_id > ref2->root_id)
+               return 1;
+       if (ref1->key_for_search.type < ref2->key_for_search.type)
+               return -1;
+       if (ref1->key_for_search.type > ref2->key_for_search.type)
+               return 1;
+       if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
+               return -1;
+       if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
+               return 1;
+       if (ref1->key_for_search.offset < ref2->key_for_search.offset)
+               return -1;
+       if (ref1->key_for_search.offset > ref2->key_for_search.offset)
+               return 1;
+       if (ref1->parent < ref2->parent)
+               return -1;
+       if (ref1->parent > ref2->parent)
+               return 1;
+
+       return 0;
+}
+
+/*
+ * Add @newref to the @root rbtree, merging identical refs.
+ *
+ * Callers should assumed that newref has been freed after calling.
+ */
+static void prelim_ref_insert(struct preftree *preftree,
+                             struct prelim_ref *newref)
+{
+       struct rb_root *root;
+       struct rb_node **p;
+       struct rb_node *parent = NULL;
+       struct prelim_ref *ref;
+       int result;
+
+       root = &preftree->root;
+       p = &root->rb_node;
+
+       while (*p) {
+               parent = *p;
+               ref = rb_entry(parent, struct prelim_ref, rbnode);
+               result = prelim_ref_compare(ref, newref);
+               if (result < 0) {
+                       p = &(*p)->rb_left;
+               } else if (result > 0) {
+                       p = &(*p)->rb_right;
+               } else {
+                       /* Identical refs, merge them and free @newref */
+                       struct extent_inode_elem *eie = ref->inode_list;
+
+                       while (eie && eie->next)
+                               eie = eie->next;
+
+                       if (!eie)
+                               ref->inode_list = newref->inode_list;
+                       else
+                               eie->next = newref->inode_list;
+                       ref->count += newref->count;
+                       free_pref(newref);
+                       return;
+               }
+       }
+
+       rb_link_node(&newref->rbnode, parent, p);
+       rb_insert_color(&newref->rbnode, root);
+}
+
+/*
+ * Release the entire tree.  We don't care about internal consistency so
+ * just free everything and then reset the tree root.
+ */
+static void prelim_release(struct preftree *preftree)
+{
+       struct prelim_ref *ref, *next_ref;
+
+       rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
+                                            rbnode)
+               free_pref(ref);
+
+       preftree->root = RB_ROOT;
+}
+
 /*
  * the rules for all callers of this function are:
  * - obtaining the parent is the goal
  * additional information that's available but not required to find the parent
  * block might help in merging entries to gain some speed.
  */
-static int add_prelim_ref(struct list_head *head, u64 root_id,
+static int add_prelim_ref(struct preftree *preftree, u64 root_id,
                          const struct btrfs_key *key, int level, u64 parent,
                          u64 wanted_disk_byte, int count, gfp_t gfp_mask)
 {
        ref->count = count;
        ref->parent = parent;
        ref->wanted_disk_byte = wanted_disk_byte;
-       list_add_tail(&ref->list, head);
+       prelim_ref_insert(preftree, ref);
 
        return 0;
 }
 
+/* direct refs use root == 0, key == NULL */
+static int add_direct_ref(struct preftrees *preftrees, int level, u64 parent,
+                         u64 wanted_disk_byte, int count, gfp_t gfp_mask)
+{
+       return add_prelim_ref(&preftrees->direct, 0, NULL, level, parent,
+                             wanted_disk_byte, count, gfp_mask);
+}
+
+/* indirect refs use parent == 0 */
+static int add_indirect_ref(struct preftrees *preftrees, u64 root_id,
+                           const struct btrfs_key *key, int level,
+                           u64 wanted_disk_byte, int count, gfp_t gfp_mask)
+{
+       struct preftree *tree = &preftrees->indirect;
+
+       if (!key)
+               tree = &preftrees->indirect_missing_keys;
+       return add_prelim_ref(tree, root_id, key, level, 0,
+                             wanted_disk_byte, count, gfp_mask);
+}
+
 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
                           struct ulist *parents, struct prelim_ref *ref,
                           int level, u64 time_seq, const u64 *extent_item_pos,
 }
 
 /*
- * resolve all indirect backrefs from the list
+ * We maintain three seperate rbtrees: one for direct refs, one for
+ * indirect refs which have a key, and one for indirect refs which do not
+ * have a key. Each tree does merge on insertion.
+ *
+ * Once all of the references are located, we iterate over the tree of
+ * indirect refs with missing keys. An appropriate key is located and
+ * the ref is moved onto the tree for indirect refs. After all missing
+ * keys are thus located, we iterate over the indirect ref tree, resolve
+ * each reference, and then insert the resolved reference onto the
+ * direct tree (merging there too).
+ *
+ * New backrefs (i.e., for parent nodes) are added to the appropriate
+ * rbtree as they are encountered. The new backrefs are subsequently
+ * resolved as above.
  */
 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
                                 struct btrfs_path *path, u64 time_seq,
-                                struct list_head *head,
+                                struct preftrees *preftrees,
                                 const u64 *extent_item_pos, u64 total_refs,
                                 u64 root_objectid)
 {
        int err;
        int ret = 0;
-       struct prelim_ref *ref;
-       struct prelim_ref *ref_safe;
-       struct prelim_ref *new_ref;
        struct ulist *parents;
        struct ulist_node *node;
        struct ulist_iterator uiter;
+       struct rb_node *rnode;
 
        parents = ulist_alloc(GFP_NOFS);
        if (!parents)
                return -ENOMEM;
 
        /*
-        * _safe allows us to insert directly after the current item without
-        * iterating over the newly inserted items.
-        * we're also allowed to re-assign ref during iteration.
+        * We could trade memory usage for performance here by iterating
+        * the tree, allocating new refs for each insertion, and then
+        * freeing the entire indirect tree when we're done.  In some test
+        * cases, the tree can grow quite large (~200k objects).
         */
-       list_for_each_entry_safe(ref, ref_safe, head, list) {
-               if (ref->parent)        /* already direct */
-                       continue;
-               if (ref->count == 0)
+       while ((rnode = rb_first(&preftrees->indirect.root))) {
+               struct prelim_ref *ref;
+
+               ref = rb_entry(rnode, struct prelim_ref, rbnode);
+               if (WARN(ref->parent,
+                        "BUG: direct ref found in indirect tree")) {
+                       ret = -EINVAL;
+                       goto out;
+               }
+
+               rb_erase(&ref->rbnode, &preftrees->indirect.root);
+
+               if (ref->count == 0) {
+                       free_pref(ref);
                        continue;
+               }
+
                if (root_objectid && ref->root_id != root_objectid) {
+                       free_pref(ref);
                        ret = BACKREF_FOUND_SHARED;
                        goto out;
                }
                 * and return directly.
                 */
                if (err == -ENOENT) {
+                       prelim_ref_insert(&preftrees->direct, ref);
                        continue;
                } else if (err) {
+                       free_pref(ref);
                        ret = err;
                        goto out;
                }
                ref->parent = node ? node->val : 0;
                ref->inode_list = unode_aux_to_inode_list(node);
 
-               /* additional parents require new refs being added here */
+               /* Add a prelim_ref(s) for any other parent(s). */
                while ((node = ulist_next(parents, &uiter))) {
+                       struct prelim_ref *new_ref;
+
                        new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
                                                   GFP_NOFS);
                        if (!new_ref) {
+                               free_pref(ref);
                                ret = -ENOMEM;
                                goto out;
                        }
                        memcpy(new_ref, ref, sizeof(*ref));
                        new_ref->parent = node->val;
                        new_ref->inode_list = unode_aux_to_inode_list(node);
-                       list_add(&new_ref->list, &ref->list);
+                       prelim_ref_insert(&preftrees->direct, new_ref);
                }
+
+               /* Now it's a direct ref, put it in the the direct tree */
+               prelim_ref_insert(&preftrees->direct, ref);
+
                ulist_reinit(parents);
        }
 out:
        return ret;
 }
 
-static inline int ref_for_same_block(struct prelim_ref *ref1,
-                                    struct prelim_ref *ref2)
-{
-       if (ref1->level != ref2->level)
-               return 0;
-       if (ref1->root_id != ref2->root_id)
-               return 0;
-       if (ref1->key_for_search.type != ref2->key_for_search.type)
-               return 0;
-       if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
-               return 0;
-       if (ref1->key_for_search.offset != ref2->key_for_search.offset)
-               return 0;
-       if (ref1->parent != ref2->parent)
-               return 0;
-
-       return 1;
-}
-
 /*
  * read tree blocks and add keys where required.
  */
 static int add_missing_keys(struct btrfs_fs_info *fs_info,
-                           struct list_head *head)
+                           struct preftrees *preftrees)
 {
        struct prelim_ref *ref;
        struct extent_buffer *eb;
+       struct preftree *tree = &preftrees->indirect_missing_keys;
+       struct rb_node *node;
 
-       list_for_each_entry(ref, head, list) {
-               if (ref->parent)
-                       continue;
-               if (ref->key_for_search.type)
-                       continue;
+       while ((node = rb_first(&tree->root))) {
+               ref = rb_entry(node, struct prelim_ref, rbnode);
+               rb_erase(node, &tree->root);
+
+               BUG_ON(ref->parent);    /* should not be a direct ref */
+               BUG_ON(ref->key_for_search.type);
                BUG_ON(!ref->wanted_disk_byte);
+
                eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
                if (IS_ERR(eb)) {
+                       free_pref(ref);
                        return PTR_ERR(eb);
                } else if (!extent_buffer_uptodate(eb)) {
+                       free_pref(ref);
                        free_extent_buffer(eb);
                        return -EIO;
                }
                        btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
                btrfs_tree_read_unlock(eb);
                free_extent_buffer(eb);
+               prelim_ref_insert(&preftrees->indirect, ref);
        }
        return 0;
 }
 
-/*
- * merge backrefs and adjust counts accordingly
- *
- *    FIXME: For MERGE_IDENTICAL_KEYS, if we add more keys in add_prelim_ref
- *           then we can merge more here. Additionally, we could even add a key
- *           range for the blocks we looked into to merge even more (-> replace
- *           unresolved refs by those having a parent).
- */
-static void merge_refs(struct list_head *head, enum merge_mode mode)
-{
-       struct prelim_ref *pos1;
-
-       list_for_each_entry(pos1, head, list) {
-               struct prelim_ref *pos2 = pos1, *tmp;
-
-               list_for_each_entry_safe_continue(pos2, tmp, head, list) {
-                       struct prelim_ref *ref1 = pos1, *ref2 = pos2;
-                       struct extent_inode_elem *eie;
-
-                       if (!ref_for_same_block(ref1, ref2))
-                               continue;
-                       if (mode == MERGE_IDENTICAL_KEYS) {
-                               if (!ref1->parent && ref2->parent)
-                                       swap(ref1, ref2);
-                       } else {
-                               if (ref1->parent != ref2->parent)
-                                       continue;
-                       }
-
-                       eie = ref1->inode_list;
-                       while (eie && eie->next)
-                               eie = eie->next;
-                       if (eie)
-                               eie->next = ref2->inode_list;
-                       else
-                               ref1->inode_list = ref2->inode_list;
-                       ref1->count += ref2->count;
-
-                       list_del(&ref2->list);
-                       kmem_cache_free(btrfs_prelim_ref_cache, ref2);
-                       cond_resched();
-               }
-
-       }
-}
-
 /*
  * add all currently queued delayed refs from this head whose seq nr is
  * smaller or equal that seq to the list
  */
 static int add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
-                           struct list_head *prefs, u64 *total_refs,
+                           struct preftrees *preftrees, u64 *total_refs,
                            u64 inum)
 {
        struct btrfs_delayed_ref_node *node;
        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
        struct btrfs_key key;
-       struct btrfs_key op_key = {0};
+       struct btrfs_key tmp_op_key;
+       struct btrfs_key *op_key = NULL;
        int sgn;
        int ret = 0;
 
-       if (extent_op && extent_op->update_key)
-               btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
+       if (extent_op && extent_op->update_key) {
+               btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
+               op_key = &tmp_op_key;
+       }
 
        spin_lock(&head->lock);
        list_for_each_entry(node, &head->ref_list, list) {
                *total_refs += (node->ref_mod * sgn);
                switch (node->type) {
                case BTRFS_TREE_BLOCK_REF_KEY: {
+                       /* NORMAL INDIRECT METADATA backref */
                        struct btrfs_delayed_tree_ref *ref;
 
                        ref = btrfs_delayed_node_to_tree_ref(node);
-                       ret = add_prelim_ref(prefs, ref->root, &op_key,
-                                            ref->level + 1, 0, node->bytenr,
-                                            node->ref_mod * sgn, GFP_ATOMIC);
+                       ret = add_indirect_ref(preftrees, ref->root, &tmp_op_key,
+                                              ref->level + 1, node->bytenr,
+                                              node->ref_mod * sgn,
+                                              GFP_ATOMIC);
                        break;
                }
                case BTRFS_SHARED_BLOCK_REF_KEY: {
+                       /* SHARED DIRECT METADATA backref */
                        struct btrfs_delayed_tree_ref *ref;
 
                        ref = btrfs_delayed_node_to_tree_ref(node);
-                       ret = add_prelim_ref(prefs, 0, NULL, ref->level + 1,
+
+                       ret = add_direct_ref(preftrees, ref->level + 1,
                                             ref->parent, node->bytenr,
-                                            node->ref_mod * sgn, GFP_ATOMIC);
+                                            node->ref_mod * sgn,
+                                            GFP_ATOMIC);
                        break;
                }
                case BTRFS_EXTENT_DATA_REF_KEY: {
+                       /* NORMAL INDIRECT DATA backref */
                        struct btrfs_delayed_data_ref *ref;
                        ref = btrfs_delayed_node_to_data_ref(node);
 
                                break;
                        }
 
-                       ret = add_prelim_ref(prefs, ref->root, &key, 0, 0,
-                                            node->bytenr, node->ref_mod * sgn,
-                                            GFP_ATOMIC);
+                       ret = add_indirect_ref(preftrees, ref->root, &key, 0,
+                                              node->bytenr,
+                                              node->ref_mod * sgn,
+                                              GFP_ATOMIC);
                        break;
                }
                case BTRFS_SHARED_DATA_REF_KEY: {
+                       /* SHARED DIRECT FULL backref */
                        struct btrfs_delayed_data_ref *ref;
 
                        ref = btrfs_delayed_node_to_data_ref(node);
-                       ret = add_prelim_ref(prefs, 0, NULL, 0, ref->parent,
-                                            node->bytenr, node->ref_mod * sgn,
+
+                       ret = add_direct_ref(preftrees, 0, ref->parent,
+                                            node->bytenr,
+                                            node->ref_mod * sgn,
                                             GFP_ATOMIC);
                        break;
                }
  * add all inline backrefs for bytenr to the list
  */
 static int add_inline_refs(struct btrfs_path *path, u64 bytenr,
-                          int *info_level, struct list_head *prefs,
+                          int *info_level, struct preftrees *preftrees,
                           u64 *total_refs, u64 inum)
 {
        int ret = 0;
 
                switch (type) {
                case BTRFS_SHARED_BLOCK_REF_KEY:
-                       ret = add_prelim_ref(prefs, 0, NULL, *info_level + 1,
-                                            offset, bytenr, 1, GFP_NOFS);
+                       ret = add_direct_ref(preftrees, *info_level + 1, offset,
+                                            bytenr, 1, GFP_NOFS);
                        break;
                case BTRFS_SHARED_DATA_REF_KEY: {
                        struct btrfs_shared_data_ref *sdref;
 
                        sdref = (struct btrfs_shared_data_ref *)(iref + 1);
                        count = btrfs_shared_data_ref_count(leaf, sdref);
-                       ret = add_prelim_ref(prefs, 0, NULL, 0, offset,
+
+                       ret = add_direct_ref(preftrees, 0, offset,
                                             bytenr, count, GFP_NOFS);
                        break;
                }
                case BTRFS_TREE_BLOCK_REF_KEY:
-                       ret = add_prelim_ref(prefs, offset, NULL,
-                                            *info_level + 1, 0,
-                                            bytenr, 1, GFP_NOFS);
+                       ret = add_indirect_ref(preftrees, offset, NULL,
+                                              *info_level + 1, bytenr, 1,
+                                              GFP_NOFS);
                        break;
                case BTRFS_EXTENT_DATA_REF_KEY: {
                        struct btrfs_extent_data_ref *dref;
                        }
 
                        root = btrfs_extent_data_ref_root(leaf, dref);
-                       ret = add_prelim_ref(prefs, root, &key, 0, 0,
-                                            bytenr, count, GFP_NOFS);
+
+                       ret = add_indirect_ref(preftrees, root, &key, 0, bytenr,
+                                              count, GFP_NOFS);
                        break;
                }
                default:
  */
 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
                          struct btrfs_path *path, u64 bytenr,
-                         int info_level, struct list_head *prefs, u64 inum)
+                         int info_level, struct preftrees *preftrees,
+                         u64 inum)
 {
        struct btrfs_root *extent_root = fs_info->extent_root;
        int ret;
 
                switch (key.type) {
                case BTRFS_SHARED_BLOCK_REF_KEY:
-                       ret = add_prelim_ref(prefs, 0, NULL, info_level + 1,
-                                            key.offset, bytenr, 1, GFP_NOFS);
+                       /* SHARED DIRECT METADATA backref */
+                       ret = add_direct_ref(preftrees, info_level + 1,
+                                            key.offset, bytenr, 1,
+                                            GFP_NOFS);
                        break;
                case BTRFS_SHARED_DATA_REF_KEY: {
+                       /* SHARED DIRECT FULL backref */
                        struct btrfs_shared_data_ref *sdref;
                        int count;
 
                        sdref = btrfs_item_ptr(leaf, slot,
                                              struct btrfs_shared_data_ref);
                        count = btrfs_shared_data_ref_count(leaf, sdref);
-                       ret = add_prelim_ref(prefs, 0, NULL, 0, key.offset,
-                                            bytenr, count, GFP_NOFS);
+                       ret = add_direct_ref(preftrees, 0, key.offset, bytenr,
+                                            count, GFP_NOFS);
                        break;
                }
                case BTRFS_TREE_BLOCK_REF_KEY:
-                       ret = add_prelim_ref(prefs, key.offset, NULL,
-                                            info_level + 1, 0,
-                                            bytenr, 1, GFP_NOFS);
+                       /* NORMAL INDIRECT METADATA backref */
+                       ret = add_indirect_ref(preftrees, key.offset, NULL,
+                                              info_level + 1, bytenr, 1,
+                                              GFP_NOFS);
                        break;
                case BTRFS_EXTENT_DATA_REF_KEY: {
+                       /* NORMAL INDIRECT DATA backref */
                        struct btrfs_extent_data_ref *dref;
                        int count;
                        u64 root;
                        }
 
                        root = btrfs_extent_data_ref_root(leaf, dref);
-                       ret = add_prelim_ref(prefs, root, &key, 0, 0,
-                                            bytenr, count, GFP_NOFS);
+                       ret = add_indirect_ref(preftrees, root, &key, 0, bytenr,
+                                              count, GFP_NOFS);
                        break;
                }
                default:
        struct btrfs_delayed_ref_head *head;
        int info_level = 0;
        int ret;
-       struct list_head prefs_delayed;
-       struct list_head prefs;
        struct prelim_ref *ref;
+       struct rb_node *node;
        struct extent_inode_elem *eie = NULL;
+       /* total of both direct AND indirect refs! */
        u64 total_refs = 0;
-
-       INIT_LIST_HEAD(&prefs);
-       INIT_LIST_HEAD(&prefs_delayed);
+       struct preftrees preftrees = {
+               .direct = PREFTREE_INIT,
+               .indirect = PREFTREE_INIT,
+               .indirect_missing_keys = PREFTREE_INIT
+       };
 
        key.objectid = bytenr;
        key.offset = (u64)-1;
                                goto again;
                        }
                        spin_unlock(&delayed_refs->lock);
-                       ret = add_delayed_refs(head, time_seq,
-                                              &prefs_delayed, &total_refs,
-                                              inum);
+                       ret = add_delayed_refs(head, time_seq, &preftrees,
+                                              &total_refs, inum);
                        mutex_unlock(&head->mutex);
                        if (ret)
                                goto out;
                    (key.type == BTRFS_EXTENT_ITEM_KEY ||
                     key.type == BTRFS_METADATA_ITEM_KEY)) {
                        ret = add_inline_refs(path, bytenr, &info_level,
-                                             &prefs, &total_refs, inum);
+                                             &preftrees, &total_refs, inum);
                        if (ret)
                                goto out;
                        ret = add_keyed_refs(fs_info, path, bytenr, info_level,
-                                            &prefs, inum);
+                                            &preftrees, inum);
                        if (ret)
                                goto out;
                }
        }
-       btrfs_release_path(path);
 
-       list_splice_init(&prefs_delayed, &prefs);
+       btrfs_release_path(path);
 
-       ret = add_missing_keys(fs_info, &prefs);
+       ret = add_missing_keys(fs_info, &preftrees);
        if (ret)
                goto out;
 
-       merge_refs(&prefs, MERGE_IDENTICAL_KEYS);
+       WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
 
-       ret = resolve_indirect_refs(fs_info, path, time_seq, &prefs,
+       ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
                                    extent_item_pos, total_refs,
                                    root_objectid);
        if (ret)
                goto out;
 
-       merge_refs(&prefs, MERGE_IDENTICAL_PARENTS);
+       WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
 
-       while (!list_empty(&prefs)) {
-               ref = list_first_entry(&prefs, struct prelim_ref, list);
+       /*
+        * This walks the tree of merged and resolved refs. Tree blocks are
+        * read in as needed. Unique entries are added to the ulist, and
+        * the list of found roots is updated.
+        *
+        * We release the entire tree in one go before returning.
+        */
+       node = rb_first(&preftrees.direct.root);
+       while (node) {
+               ref = rb_entry(node, struct prelim_ref, rbnode);
+               node = rb_next(&ref->rbnode);
                WARN_ON(ref->count < 0);
                if (roots && ref->count && ref->root_id && ref->parent == 0) {
                        if (root_objectid && ref->root_id != root_objectid) {
                        }
                        eie = NULL;
                }
-               list_del(&ref->list);
-               kmem_cache_free(btrfs_prelim_ref_cache, ref);
        }
 
 out:
        btrfs_free_path(path);
-       while (!list_empty(&prefs)) {
-               ref = list_first_entry(&prefs, struct prelim_ref, list);
-               list_del(&ref->list);
-               kmem_cache_free(btrfs_prelim_ref_cache, ref);
-       }
-       while (!list_empty(&prefs_delayed)) {
-               ref = list_first_entry(&prefs_delayed, struct prelim_ref,
-                                      list);
-               list_del(&ref->list);
-               kmem_cache_free(btrfs_prelim_ref_cache, ref);
-       }
+
+       prelim_release(&preftrees.direct);
+       prelim_release(&preftrees.indirect);
+       prelim_release(&preftrees.indirect_missing_keys);
+
        if (ret < 0)
                free_inode_elem_list(eie);
        return ret;