* Keep track of memory that is to be preserved across KHO.
*
* The serializing side uses two levels of xarrays to manage chunks of per-order
- * 512 byte bitmaps. For instance if PAGE_SIZE = 4096, the entire 1G order of a
- * 1TB system would fit inside a single 512 byte bitmap. For order 0 allocations
- * each bitmap will cover 16M of address space. Thus, for 16G of memory at most
- * 512K of bitmap memory will be needed for order 0.
+ * PAGE_SIZE byte bitmaps. For instance if PAGE_SIZE = 4096, the entire 1G order
+ * of a 8TB system would fit inside a single 4096 byte bitmap. For order 0
+ * allocations each bitmap will cover 128M of address space. Thus, for 16G of
+ * memory at most 512K of bitmap memory will be needed for order 0.
*
* This approach is fully incremental, as the serialization progresses folios
* can continue be aggregated to the tracker. The final step, immediately prior
* successor kernel to parse.
*/
-#define PRESERVE_BITS (512 * 8)
+#define PRESERVE_BITS (PAGE_SIZE * 8)
struct kho_mem_phys_bits {
DECLARE_BITMAP(preserve, PRESERVE_BITS);
};
+static_assert(sizeof(struct kho_mem_phys_bits) == PAGE_SIZE);
+
struct kho_mem_phys {
/*
* Points to kho_mem_phys_bits, a sparse bitmap array. Each bit is sized
.finalized = false,
};
-static void *xa_load_or_alloc(struct xarray *xa, unsigned long index, size_t sz)
+static void *xa_load_or_alloc(struct xarray *xa, unsigned long index)
{
void *res = xa_load(xa, index);
if (res)
return res;
- void *elm __free(kfree) = kzalloc(sz, GFP_KERNEL);
+ void *elm __free(kfree) = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!elm)
return ERR_PTR(-ENOMEM);
- if (WARN_ON(kho_scratch_overlap(virt_to_phys(elm), sz)))
+ if (WARN_ON(kho_scratch_overlap(virt_to_phys(elm), PAGE_SIZE)))
return ERR_PTR(-EINVAL);
res = xa_cmpxchg(xa, index, NULL, elm, GFP_KERNEL);
}
}
- bits = xa_load_or_alloc(&physxa->phys_bits, pfn_high / PRESERVE_BITS,
- sizeof(*bits));
+ bits = xa_load_or_alloc(&physxa->phys_bits, pfn_high / PRESERVE_BITS);
if (IS_ERR(bits))
return PTR_ERR(bits);