}
 }
 
-static cpumask_var_t *alloc_node_to_present_cpumask(void)
+static cpumask_var_t *alloc_node_to_possible_cpumask(void)
 {
        cpumask_var_t *masks;
        int node;
        return NULL;
 }
 
-static void free_node_to_present_cpumask(cpumask_var_t *masks)
+static void free_node_to_possible_cpumask(cpumask_var_t *masks)
 {
        int node;
 
        kfree(masks);
 }
 
-static void build_node_to_present_cpumask(cpumask_var_t *masks)
+static void build_node_to_possible_cpumask(cpumask_var_t *masks)
 {
        int cpu;
 
-       for_each_present_cpu(cpu)
+       for_each_possible_cpu(cpu)
                cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
 }
 
-static int get_nodes_in_cpumask(cpumask_var_t *node_to_present_cpumask,
+static int get_nodes_in_cpumask(cpumask_var_t *node_to_possible_cpumask,
                                const struct cpumask *mask, nodemask_t *nodemsk)
 {
        int n, nodes = 0;
 
        /* Calculate the number of nodes in the supplied affinity mask */
        for_each_node(n) {
-               if (cpumask_intersects(mask, node_to_present_cpumask[n])) {
+               if (cpumask_intersects(mask, node_to_possible_cpumask[n])) {
                        node_set(n, *nodemsk);
                        nodes++;
                }
        int last_affv = affv + affd->pre_vectors;
        nodemask_t nodemsk = NODE_MASK_NONE;
        struct cpumask *masks;
-       cpumask_var_t nmsk, *node_to_present_cpumask;
+       cpumask_var_t nmsk, *node_to_possible_cpumask;
 
        /*
         * If there aren't any vectors left after applying the pre/post
        if (!masks)
                goto out;
 
-       node_to_present_cpumask = alloc_node_to_present_cpumask();
-       if (!node_to_present_cpumask)
+       node_to_possible_cpumask = alloc_node_to_possible_cpumask();
+       if (!node_to_possible_cpumask)
                goto out;
 
        /* Fill out vectors at the beginning that don't need affinity */
 
        /* Stabilize the cpumasks */
        get_online_cpus();
-       build_node_to_present_cpumask(node_to_present_cpumask);
-       nodes = get_nodes_in_cpumask(node_to_present_cpumask, cpu_present_mask,
+       build_node_to_possible_cpumask(node_to_possible_cpumask);
+       nodes = get_nodes_in_cpumask(node_to_possible_cpumask, cpu_possible_mask,
                                     &nodemsk);
 
        /*
        if (affv <= nodes) {
                for_each_node_mask(n, nodemsk) {
                        cpumask_copy(masks + curvec,
-                                    node_to_present_cpumask[n]);
+                                    node_to_possible_cpumask[n]);
                        if (++curvec == last_affv)
                                break;
                }
                vecs_per_node = (affv - (curvec - affd->pre_vectors)) / nodes;
 
                /* Get the cpus on this node which are in the mask */
-               cpumask_and(nmsk, cpu_present_mask, node_to_present_cpumask[n]);
+               cpumask_and(nmsk, cpu_possible_mask, node_to_possible_cpumask[n]);
 
                /* Calculate the number of cpus per vector */
                ncpus = cpumask_weight(nmsk);
        /* Fill out vectors at the end that don't need affinity */
        for (; curvec < nvecs; curvec++)
                cpumask_copy(masks + curvec, irq_default_affinity);
-       free_node_to_present_cpumask(node_to_present_cpumask);
+       free_node_to_possible_cpumask(node_to_possible_cpumask);
 out:
        free_cpumask_var(nmsk);
        return masks;
                return 0;
 
        get_online_cpus();
-       ret = min_t(int, cpumask_weight(cpu_present_mask), vecs) + resv;
+       ret = min_t(int, cpumask_weight(cpu_possible_mask), vecs) + resv;
        put_online_cpus();
        return ret;
 }