for (;;) {
 
-               record_header = (ATOM_COMMON_RECORD_HEADER *)
-                       GET_IMAGE(ATOM_COMMON_RECORD_HEADER, record_offset);
+               record_header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, record_offset);
                if (record_header == NULL) {
                        result = BP_RESULT_BADBIOSTABLE;
                        break;
 
                if (record_header->ucRecordType ==
                        ATOM_BRACKET_LAYOUT_RECORD_TYPE &&
-                       sizeof(ATOM_BRACKET_LAYOUT_RECORD)
+                       struct_size(record, asConnInfo, 1)
                        <= record_header->ucRecordSize) {
                        record = (ATOM_BRACKET_LAYOUT_RECORD *)
                                (record_header);
 
   ATOM_COMMON_RECORD_HEADER   sheader;
   UCHAR                       ucNumberOfDevice;
   UCHAR                       ucReserved;
-  ATOM_CONNECTOR_DEVICE_TAG   asDeviceTag[1];         //This Id is same as "ATOM_DEVICE_XXX_SUPPORT", 1 is only for allocation
+  ATOM_CONNECTOR_DEVICE_TAG   asDeviceTag[];          //This Id is same as "ATOM_DEVICE_XXX_SUPPORT"
 }ATOM_CONNECTOR_DEVICE_TAG_RECORD;
 
 
   ATOM_COMMON_RECORD_HEADER   sheader;
   UCHAR                       ucFlags;                // Future expnadibility
   UCHAR                       ucNumberOfPins;         // Number of GPIO pins used to control the object
-  ATOM_GPIO_PIN_CONTROL_PAIR  asGpio[1];              // the real gpio pin pair determined by number of pins ucNumberOfPins
+  ATOM_GPIO_PIN_CONTROL_PAIR  asGpio[];               // the real gpio pin pair determined by number of pins ucNumberOfPins
 }ATOM_OBJECT_GPIO_CNTL_RECORD;
 
 //Definitions for GPIO pin state
   UCHAR                       ucWidth;
   UCHAR                       ucConnNum;
   UCHAR                       ucReserved;
-  ATOM_CONNECTOR_LAYOUT_INFO  asConnInfo[1];
+  ATOM_CONNECTOR_LAYOUT_INFO  asConnInfo[];
 }ATOM_BRACKET_LAYOUT_RECORD;
 
 
    UCHAR  ucPhaseDelay;                      // phase delay in unit of micro second
    UCHAR  ucReserved;
    ULONG  ulGpioMaskVal;                     // GPIO Mask value
-   VOLTAGE_LUT_ENTRY_V2 asVolGpioLut[1];
+   VOLTAGE_LUT_ENTRY_V2 asVolGpioLut[];
 }ATOM_GPIO_VOLTAGE_OBJECT_V3;
 
 typedef struct  _ATOM_LEAKAGE_VOLTAGE_OBJECT_V3
    UCHAR    ucLeakageEntryNum;               // indicate the entry number of LeakageId/Voltage Lut table
    UCHAR    ucReserved[2];
    ULONG    ulMaxVoltageLevel;
-   LEAKAGE_VOLTAGE_LUT_ENTRY_V2 asLeakageIdLut[1];
+   LEAKAGE_VOLTAGE_LUT_ENTRY_V2 asLeakageIdLut[];
 }ATOM_LEAKAGE_VOLTAGE_OBJECT_V3;
 
 
 typedef struct _ATOM_I2C_DATA_RECORD
 {
   UCHAR         ucNunberOfBytes;                                              //Indicates how many bytes SW needs to write to the external ASIC for one block, besides to "Start" and "Stop"
-  UCHAR         ucI2CData[1];                                                 //I2C data in bytes, should be less than 16 bytes usually
+  UCHAR         ucI2CData[];                                                  //I2C data in bytes, should be less than 16 bytes usually
 }ATOM_I2C_DATA_RECORD;
 
 
   UCHAR                              ucSSChipID;             //SS chip being used
   UCHAR                              ucSSChipSlaveAddr;      //Slave Address to set up this SS chip
   UCHAR                           ucNumOfI2CDataRecords;  //number of data block
-  ATOM_I2C_DATA_RECORD            asI2CData[1];
+  ATOM_I2C_DATA_RECORD            asI2CData[];
 }ATOM_I2C_DEVICE_SETUP_INFO;
 
 //==========================================================================================
 typedef struct  _ATOM_ASIC_MVDD_INFO
 {
   ATOM_COMMON_TABLE_HEADER         sHeader;
-  ATOM_I2C_DEVICE_SETUP_INFO      asI2CSetup[1];
+  ATOM_I2C_DEVICE_SETUP_INFO      asI2CSetup[];
 }ATOM_ASIC_MVDD_INFO;
 
 //==========================================================================================