/* Ethernet chip registers.
*/
-#define SCBStatus 0 /* Rx/Command Unit Status *Word* */
-#define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
-#define SCBCmd 2 /* Rx/Command Unit Command *Word* */
-#define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
-#define SCBPointer 4 /* General purpose pointer. */
-#define SCBPort 8 /* Misc. commands and operands. */
-#define SCBflash 12 /* Flash memory control. */
-#define SCBeeprom 14 /* EEPROM memory control. */
-#define SCBCtrlMDI 16 /* MDI interface control. */
-#define SCBEarlyRx 20 /* Early receive byte count. */
-#define SCBGenControl 28 /* 82559 General Control Register */
-#define SCBGenStatus 29 /* 82559 General Status register */
+#define SCBStatus 0 /* Rx/Command Unit Status *Word* */
+#define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
+#define SCBCmd 2 /* Rx/Command Unit Command *Word* */
+#define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
+#define SCBPointer 4 /* General purpose pointer. */
+#define SCBPort 8 /* Misc. commands and operands. */
+#define SCBflash 12 /* Flash memory control. */
+#define SCBeeprom 14 /* EEPROM memory control. */
+#define SCBCtrlMDI 16 /* MDI interface control. */
+#define SCBEarlyRx 20 /* Early receive byte count. */
+#define SCBGenControl 28 /* 82559 General Control Register */
+#define SCBGenStatus 29 /* 82559 General Status register */
/* 82559 SCB status word defnitions
*/
-#define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
-#define SCB_STATUS_FR 0x4000 /* frame received */
-#define SCB_STATUS_CNA 0x2000 /* CU left active state */
-#define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
-#define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
-#define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
-#define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
+#define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
+#define SCB_STATUS_FR 0x4000 /* frame received */
+#define SCB_STATUS_CNA 0x2000 /* CU left active state */
+#define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
+#define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
+#define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
+#define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
-#define SCB_INTACK_MASK 0xFD00 /* all the above */
+#define SCB_INTACK_MASK 0xFD00 /* all the above */
#define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
#define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
#define CU_NOP 0x0000
#define CU_START 0x0010
#define CU_RESUME 0x0020
-#define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
-#define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
-#define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
-#define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
+#define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
+#define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
+#define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
+#define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
/* RUC Commands */
#define RUC_NOP 0x0000
#define RUC_START 0x0001
#define RUC_RESUME 0x0002
#define RUC_ABORT 0x0004
-#define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
+#define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
#define RUC_RESUMENR 0x0007
#define CU_CMD_MASK 0x00f0
#define RU_CMD_MASK 0x0007
-#define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
-#define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
+#define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
+#define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
#define CU_STATUS_MASK 0x00C0
#define RU_STATUS_MASK 0x003C
/* 82559 Port interface commands.
*/
-#define I82559_RESET 0x00000000 /* Software reset */
-#define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
+#define I82559_RESET 0x00000000 /* Software reset */
+#define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
#define I82559_SELECTIVE_RESET 0x00000002
#define I82559_DUMP 0x00000003
#define I82559_DUMP_WAKEUP 0x00000007
/* 82559 Eeprom interface.
*/
-#define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
-#define EE_CS 0x02 /* EEPROM chip select. */
-#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
+#define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
+#define EE_CS 0x02 /* EEPROM chip select. */
+#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
#define EE_WRITE_0 0x01
#define EE_WRITE_1 0x05
-#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
+#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
#define EE_ENB (0x4800 | EE_CS)
/* The EEPROM commands include the alway-set leading bit.
struct RxFD {
volatile u16 status;
volatile u16 control;
- volatile u32 link; /* struct RxFD * */
- volatile u32 rx_buf_addr; /* void * */
+ volatile u32 link; /* struct RxFD * */
+ volatile u32 rx_buf_addr; /* void * */
volatile u32 count;
volatile u8 data[PKTSIZE_ALIGN];
};
-#define RFD_STATUS_C 0x8000 /* completion of received frame */
-#define RFD_STATUS_OK 0x2000 /* frame received with no errors */
+#define RFD_STATUS_C 0x8000 /* completion of received frame */
+#define RFD_STATUS_OK 0x2000 /* frame received with no errors */
-#define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
-#define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
-#define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
-#define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
+#define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
+#define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
+#define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
+#define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
#define RFD_COUNT_MASK 0x3fff
#define RFD_COUNT_F 0x4000
#define RFD_COUNT_EOF 0x8000
-#define RFD_RX_CRC 0x0800 /* crc error */
-#define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
-#define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
-#define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
-#define RFD_RX_SHORT 0x0080 /* short frame error */
+#define RFD_RX_CRC 0x0800 /* crc error */
+#define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
+#define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
+#define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
+#define RFD_RX_SHORT 0x0080 /* short frame error */
#define RFD_RX_LENGTH 0x0020
-#define RFD_RX_ERROR 0x0010 /* receive error */
-#define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
-#define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
-#define RFD_RX_TCO 0x0001 /* TCO indication */
+#define RFD_RX_ERROR 0x0010 /* receive error */
+#define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
+#define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
+#define RFD_RX_TCO 0x0001 /* TCO indication */
/* Transmit frame descriptors
*/
-struct TxFD { /* Transmit frame descriptor set. */
+struct TxFD { /* Transmit frame descriptor set. */
volatile u16 status;
volatile u16 command;
- volatile u32 link; /* void * */
- volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
+ volatile u32 link; /* void * */
+ volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
volatile s32 count;
- volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
- volatile s32 tx_buf_size0; /* Length of Tx frame. */
- volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
- volatile s32 tx_buf_size1; /* Length of Tx frame. */
+ volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
+ volatile s32 tx_buf_size0; /* Length of Tx frame. */
+ volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
+ volatile s32 tx_buf_size1; /* Length of Tx frame. */
};
-#define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
-#define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
-#define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
-#define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
-#define TxCB_CMD_S 0x4000 /* suspend on completion */
-#define TxCB_CMD_EL 0x8000 /* last command block in CBL */
+#define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
+#define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
+#define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
+#define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
+#define TxCB_CMD_S 0x4000 /* suspend on completion */
+#define TxCB_CMD_EL 0x8000 /* last command block in CBL */
#define TxCB_COUNT_MASK 0x3fff
#define TxCB_COUNT_EOF 0x8000
/* The Speedo3 Rx and Tx frame/buffer descriptors.
*/
-struct descriptor { /* A generic descriptor. */
+struct descriptor { /* A generic descriptor. */
volatile u16 status;
volatile u16 command;
- volatile u32 link; /* struct descriptor * */
+ volatile u32 link; /* struct descriptor * */
unsigned char params[0];
};
#define CFG_CMD_EL 0x8000
#define CFG_CMD_SUSPEND 0x4000
#define CFG_CMD_INT 0x2000
-#define CFG_CMD_IAS 0x0001 /* individual address setup */
-#define CFG_CMD_CONFIGURE 0x0002 /* configure */
+#define CFG_CMD_IAS 0x0001 /* individual address setup */
+#define CFG_CMD_CONFIGURE 0x0002 /* configure */
#define CFG_STATUS_C 0x8000
#define CFG_STATUS_OK 0x2000
/* Misc.
*/
#define NUM_RX_DESC PKTBUFSRX
-#define NUM_TX_DESC 1 /* Number of TX descriptors */
+#define NUM_TX_DESC 1 /* Number of TX descriptors */
#define TOUT_LOOP 1000000
#define ETH_ALEN 6
-static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
-static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
-static int rx_next; /* RX descriptor ring pointer */
-static int tx_next; /* TX descriptor ring pointer */
+static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
+static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
+static int rx_next; /* RX descriptor ring pointer */
+static int tx_next; /* TX descriptor ring pointer */
static int tx_threshold;
-static void init_rx_ring(struct eth_device* dev);
-static void purge_tx_ring(struct eth_device* dev);
+/*
+ * The parameters for a CmdConfigure operation.
+ * There are so many options that it would be difficult to document
+ * each bit. We mostly use the default or recommended settings.
+ */
+static const char i82557_config_cmd[] = {
+ 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
+ 0, 0x2E, 0, 0x60, 0,
+ 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
+ 0x3f, 0x05,
+};
+static const char i82558_config_cmd[] = {
+ 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
+ 0, 0x2E, 0, 0x60, 0x08, 0x88,
+ 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
+ 0x31, 0x05,
+};
+
+static void init_rx_ring (struct eth_device *dev);
+static void purge_tx_ring (struct eth_device *dev);
-static void read_hw_addr(struct eth_device* dev, bd_t * bis);
+static void read_hw_addr (struct eth_device *dev, bd_t * bis);
-static int eepro100_init(struct eth_device* dev, bd_t *bis);
-static int eepro100_send(struct eth_device* dev, volatile void *packet, int length);
-static int eepro100_recv(struct eth_device* dev);
-static void eepro100_halt(struct eth_device* dev);
+static int eepro100_init (struct eth_device *dev, bd_t * bis);
+static int eepro100_send (struct eth_device *dev, volatile void *packet,
+ int length);
+static int eepro100_recv (struct eth_device *dev);
+static void eepro100_halt (struct eth_device *dev);
#define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
-static inline int INW(struct eth_device* dev, u_long addr)
+static inline int INW (struct eth_device *dev, u_long addr)
{
- return le16_to_cpu(*(volatile u16 *)(addr + dev->iobase));
+ return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
}
-static inline void OUTW(struct eth_device* dev, int command, u_long addr)
+static inline void OUTW (struct eth_device *dev, int command, u_long addr)
{
- *(volatile u16 *)((addr + dev->iobase)) = cpu_to_le16(command);
+ *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
}
-static inline void OUTL(struct eth_device *dev, int command, u_long addr)
+static inline void OUTL (struct eth_device *dev, int command, u_long addr)
{
- *(volatile u32 *)((addr + dev->iobase)) = cpu_to_le32(command);
+ *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
}
/* Wait for the chip get the command.
*/
-static int wait_for_eepro100(struct eth_device *dev)
+static int wait_for_eepro100 (struct eth_device *dev)
{
int i;
- for(i = 0; INW(dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++)
- {
- if (i >= TOUT_LOOP)
- {
+ for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
+ if (i >= TOUT_LOOP) {
return 0;
}
}
}
static struct pci_device_id supported[] = {
- { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557 },
- { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559 },
- { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER },
- { }
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
+ {}
};
-int eepro100_initialize(bd_t *bis)
+int eepro100_initialize (bd_t * bis)
{
pci_dev_t devno;
int card_number = 0;
- struct eth_device* dev;
+ struct eth_device *dev;
u32 iobase, status;
int idx = 0;
- while (1)
- {
+ while (1) {
/* Find PCI device
*/
- if ((devno = pci_find_devices(supported, idx++)) < 0)
- {
+ if ((devno = pci_find_devices (supported, idx++)) < 0) {
break;
}
- pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
+ pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
iobase &= ~0xf;
#ifdef DEBUG
- printf("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n", iobase);
+ printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
+ iobase);
#endif
- pci_write_config_dword(devno,
- PCI_COMMAND,
- PCI_COMMAND_MEMORY |
- PCI_COMMAND_MASTER);
+ pci_write_config_dword (devno,
+ PCI_COMMAND,
+ PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
/* Check if I/O accesses and Bus Mastering are enabled.
*/
- pci_read_config_dword(devno, PCI_COMMAND, &status);
- if (!(status & PCI_COMMAND_MEMORY))
- {
- printf("Error: Can not enable MEM access.\n");
+ pci_read_config_dword (devno, PCI_COMMAND, &status);
+ if (!(status & PCI_COMMAND_MEMORY)) {
+ printf ("Error: Can not enable MEM access.\n");
continue;
}
- if (!(status & PCI_COMMAND_MASTER))
- {
- printf("Error: Can not enable Bus Mastering.\n");
+ if (!(status & PCI_COMMAND_MASTER)) {
+ printf ("Error: Can not enable Bus Mastering.\n");
continue;
}
- dev = (struct eth_device*) malloc(sizeof *dev);
+ dev = (struct eth_device *) malloc (sizeof *dev);
- sprintf(dev->name, "i82559#%d", card_number);
- dev->iobase = bus_to_phys(iobase);
- dev->priv = (void*) devno;
- dev->init = eepro100_init;
- dev->halt = eepro100_halt;
- dev->send = eepro100_send;
- dev->recv = eepro100_recv;
+ sprintf (dev->name, "i82559#%d", card_number);
+ dev->iobase = bus_to_phys (iobase);
+ dev->priv = (void *) devno;
+ dev->init = eepro100_init;
+ dev->halt = eepro100_halt;
+ dev->send = eepro100_send;
+ dev->recv = eepro100_recv;
- eth_register(dev);
+ eth_register (dev);
card_number++;
/* Set the latency timer for value.
*/
- pci_write_config_byte(devno, PCI_LATENCY_TIMER, 0x20);
+ pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
- udelay(10 * 1000);
+ udelay (10 * 1000);
- read_hw_addr(dev, bis);
+ read_hw_addr (dev, bis);
}
return card_number;
}
-static int eepro100_init(struct eth_device* dev, bd_t *bis)
+static int eepro100_init (struct eth_device *dev, bd_t * bis)
{
int i, status = 0;
int tx_cur;
- struct descriptor *ias_cmd;
+ struct descriptor *ias_cmd, *cfg_cmd;
/* Reset the ethernet controller
*/
- OUTL(dev, I82559_SELECTIVE_RESET, SCBPort);
- udelay(20);
+ OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
+ udelay (20);
- OUTL(dev, I82559_RESET, SCBPort);
- udelay(20);
+ OUTL (dev, I82559_RESET, SCBPort);
+ udelay (20);
- if (!wait_for_eepro100(dev))
- {
- printf("Error: Can not reset ethernet controller.\n");
+ if (!wait_for_eepro100 (dev)) {
+ printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
- OUTL(dev, 0, SCBPointer);
- OUTW(dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
+ OUTL (dev, 0, SCBPointer);
+ OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
- if (!wait_for_eepro100(dev))
- {
- printf("Error: Can not reset ethernet controller.\n");
+ if (!wait_for_eepro100 (dev)) {
+ printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
- OUTL(dev, 0, SCBPointer);
- OUTW(dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
+ OUTL (dev, 0, SCBPointer);
+ OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
- /* Initialize Rx and Tx rings.
- */
- init_rx_ring(dev);
- purge_tx_ring(dev);
+ /* Initialize Rx and Tx rings.
+ */
+ init_rx_ring (dev);
+ purge_tx_ring (dev);
- /* Tell the adapter where the RX ring is located.
- */
- if (!wait_for_eepro100(dev))
- {
- printf("Error: Can not reset ethernet controller.\n");
+ /* Tell the adapter where the RX ring is located.
+ */
+ if (!wait_for_eepro100 (dev)) {
+ printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
- OUTL(dev, phys_to_bus((u32) &rx_ring[rx_next]), SCBPointer);
- OUTW(dev, SCB_M | RUC_START, SCBCmd);
+ OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
+ OUTW (dev, SCB_M | RUC_START, SCBCmd);
- /* Send the Individual Address Setup frame
- */
- tx_cur = tx_next;
- tx_next = ((tx_next+1) % NUM_TX_DESC);
+ /* Send the Configure frame */
+ tx_cur = tx_next;
+ tx_next = ((tx_next + 1) % NUM_TX_DESC);
- ias_cmd = (struct descriptor *)&tx_ring[tx_cur];
- ias_cmd->command = cpu_to_le16((CFG_CMD_SUSPEND | CFG_CMD_IAS));
- ias_cmd->status = 0;
- ias_cmd->link = cpu_to_le32(phys_to_bus((u32) &tx_ring[tx_next]));
+ cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
+ cfg_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_CONFIGURE));
+ cfg_cmd->status = 0;
+ cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
- memcpy(ias_cmd->params, dev->enetaddr, 6);
+ memcpy (cfg_cmd->params, i82558_config_cmd,
+ sizeof (i82558_config_cmd));
- /* Tell the adapter where the TX ring is located.
- */
- if (!wait_for_eepro100(dev))
- {
- printf("Error: Can not reset ethernet controller.\n");
+ if (!wait_for_eepro100 (dev)) {
+ printf ("Error---CFG_CMD_CONFIGURE: Can not reset ethernet controller.\n");
goto Done;
}
- OUTL(dev, phys_to_bus((u32) &tx_ring[tx_cur]), SCBPointer);
- OUTW(dev, SCB_M | CU_START, SCBCmd);
+ OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
+ OUTW (dev, SCB_M | CU_START, SCBCmd);
- for (i=0; !(le16_to_cpu(tx_ring[tx_cur].status) & CFG_STATUS_C); i++)
- {
- if (i >= TOUT_LOOP)
- {
- printf("%s: Tx error buffer not ready\n", dev->name);
+ for (i = 0;
+ !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
+ i++) {
+ if (i >= TOUT_LOOP) {
+ printf ("%s: Tx error buffer not ready\n", dev->name);
goto Done;
}
}
- if (!(le16_to_cpu(tx_ring[tx_cur].status) & CFG_STATUS_OK))
- {
- printf("TX error status = 0x%08X\n",
- le16_to_cpu(tx_ring[tx_cur].status));
+ if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
+ printf ("TX error status = 0x%08X\n",
+ le16_to_cpu (tx_ring[tx_cur].status));
+ goto Done;
+ }
+
+ /* Send the Individual Address Setup frame
+ */
+ tx_cur = tx_next;
+ tx_next = ((tx_next + 1) % NUM_TX_DESC);
+
+ ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
+ ias_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_IAS));
+ ias_cmd->status = 0;
+ ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
+
+ memcpy (ias_cmd->params, dev->enetaddr, 6);
+
+ /* Tell the adapter where the TX ring is located.
+ */
+ if (!wait_for_eepro100 (dev)) {
+ printf ("Error: Can not reset ethernet controller.\n");
+ goto Done;
+ }
+
+ OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
+ OUTW (dev, SCB_M | CU_START, SCBCmd);
+
+ for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
+ i++) {
+ if (i >= TOUT_LOOP) {
+ printf ("%s: Tx error buffer not ready\n",
+ dev->name);
+ goto Done;
+ }
+ }
+
+ if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
+ printf ("TX error status = 0x%08X\n",
+ le16_to_cpu (tx_ring[tx_cur].status));
goto Done;
}
status = 1;
-Done:
+ Done:
return status;
}
-static int eepro100_send(struct eth_device* dev, volatile void *packet, int length)
+static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
{
int i, status = -1;
int tx_cur;
- if (length <= 0)
- {
- printf("%s: bad packet size: %d\n", dev->name, length);
+ if (length <= 0) {
+ printf ("%s: bad packet size: %d\n", dev->name, length);
goto Done;
}
- tx_cur = tx_next;
- tx_next = (tx_next+1) % NUM_TX_DESC;
-
- tx_ring[tx_cur].command = cpu_to_le16(TxCB_CMD_TRANSMIT | TxCB_CMD_SF | \
- TxCB_CMD_S | TxCB_CMD_EL);
- tx_ring[tx_cur].status = 0;
- tx_ring[tx_cur].count = cpu_to_le32(tx_threshold);
- tx_ring[tx_cur].link = cpu_to_le32(phys_to_bus((u32) &tx_ring[tx_next]));
- tx_ring[tx_cur].tx_desc_addr = cpu_to_le32(phys_to_bus((u32) &tx_ring[tx_cur].tx_buf_addr0));
- tx_ring[tx_cur].tx_buf_addr0 = cpu_to_le32(phys_to_bus((u_long) packet));
- tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32(length);
-
- if (!wait_for_eepro100(dev))
- {
- printf("%s: Tx error ethernet controller not ready.\n", dev->name);
+ tx_cur = tx_next;
+ tx_next = (tx_next + 1) % NUM_TX_DESC;
+
+ tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
+ TxCB_CMD_SF |
+ TxCB_CMD_S |
+ TxCB_CMD_EL );
+ tx_ring[tx_cur].status = 0;
+ tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
+ tx_ring[tx_cur].link =
+ cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
+ tx_ring[tx_cur].tx_desc_addr =
+ cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
+ tx_ring[tx_cur].tx_buf_addr0 =
+ cpu_to_le32 (phys_to_bus ((u_long) packet));
+ tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
+
+ if (!wait_for_eepro100 (dev)) {
+ printf ("%s: Tx error ethernet controller not ready.\n",
+ dev->name);
goto Done;
}
/* Send the packet.
*/
- OUTL(dev, phys_to_bus((u32) &tx_ring[tx_cur]), SCBPointer);
- OUTW(dev, SCB_M | CU_START, SCBCmd);
-
- for(i = 0; !(le16_to_cpu(tx_ring[tx_cur].status) & CFG_STATUS_C); i++)
- {
- if (i >= TOUT_LOOP)
- {
- printf("%s: Tx error buffer not ready\n", dev->name);
+ OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
+ OUTW (dev, SCB_M | CU_START, SCBCmd);
+
+ for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
+ i++) {
+ if (i >= TOUT_LOOP) {
+ printf ("%s: Tx error buffer not ready\n", dev->name);
goto Done;
}
}
- if (!(le16_to_cpu(tx_ring[tx_cur].status) & CFG_STATUS_OK))
- {
- printf("TX error status = 0x%08X\n",
- le16_to_cpu(tx_ring[tx_cur].status));
+ if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
+ printf ("TX error status = 0x%08X\n",
+ le16_to_cpu (tx_ring[tx_cur].status));
goto Done;
}
status = length;
- Done:
+ Done:
return status;
}
-static int eepro100_recv(struct eth_device* dev)
+static int eepro100_recv (struct eth_device *dev)
{
u16 status, stat;
int rx_prev, length = 0;
- stat = INW(dev, SCBStatus);
- OUTW(dev, stat & SCB_STATUS_RNR, SCBStatus);
+ stat = INW (dev, SCBStatus);
+ OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
- for ( ; ; )
- {
- status = le16_to_cpu(rx_ring[rx_next].status);
+ for (;;) {
+ status = le16_to_cpu (rx_ring[rx_next].status);
- if (!(status & RFD_STATUS_C))
- {
+ if (!(status & RFD_STATUS_C)) {
break;
}
- /* Valid frame status.
+ /* Valid frame status.
+ */
+ if ((status & RFD_STATUS_OK)) {
+ /* A valid frame received.
*/
- if ((status & RFD_STATUS_OK))
- {
- /* A valid frame received.
- */
- length = le32_to_cpu(rx_ring[rx_next].count) & 0x3fff;
-
- /* Pass the packet up to the protocol
- * layers.
- */
- NetReceive(rx_ring[rx_next].data, length);
- }
- else
- {
- /* There was an error.
- */
- printf("RX error status = 0x%08X\n", status);
+ length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
+
+ /* Pass the packet up to the protocol
+ * layers.
+ */
+ NetReceive (rx_ring[rx_next].data, length);
+ } else {
+ /* There was an error.
+ */
+ printf ("RX error status = 0x%08X\n", status);
}
- rx_ring[rx_next].control = cpu_to_le16(RFD_CONTROL_S);
- rx_ring[rx_next].status = 0;
- rx_ring[rx_next].count = cpu_to_le32(PKTSIZE_ALIGN << 16);
+ rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
+ rx_ring[rx_next].status = 0;
+ rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
- rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
+ rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
rx_ring[rx_prev].control = 0;
/* Update entry information.
rx_next = (rx_next + 1) % NUM_RX_DESC;
}
- if (stat & SCB_STATUS_RNR)
- {
+ if (stat & SCB_STATUS_RNR) {
- printf("%s: Receiver is not ready, restart it !\n", dev->name);
+ printf ("%s: Receiver is not ready, restart it !\n", dev->name);
/* Reinitialize Rx ring.
*/
- init_rx_ring(dev);
+ init_rx_ring (dev);
- if (!wait_for_eepro100(dev))
- {
- printf("Error: Can not restart ethernet controller.\n");
+ if (!wait_for_eepro100 (dev)) {
+ printf ("Error: Can not restart ethernet controller.\n");
goto Done;
}
- OUTL(dev, phys_to_bus((u32) &rx_ring[rx_next]), SCBPointer);
- OUTW(dev, SCB_M | RUC_START, SCBCmd);
+ OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
+ OUTW (dev, SCB_M | RUC_START, SCBCmd);
}
- Done:
+ Done:
return length;
}
-static void eepro100_halt(struct eth_device* dev)
+static void eepro100_halt (struct eth_device *dev)
{
/* Reset the ethernet controller
*/
- OUTL(dev, I82559_SELECTIVE_RESET, SCBPort);
- udelay(20);
+ OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
+ udelay (20);
- OUTL(dev, I82559_RESET, SCBPort);
- udelay(20);
+ OUTL (dev, I82559_RESET, SCBPort);
+ udelay (20);
- if (!wait_for_eepro100(dev))
- {
- printf("Error: Can not reset ethernet controller.\n");
+ if (!wait_for_eepro100 (dev)) {
+ printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
- OUTL(dev, 0, SCBPointer);
- OUTW(dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
+ OUTL (dev, 0, SCBPointer);
+ OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
- if (!wait_for_eepro100(dev))
- {
- printf("Error: Can not reset ethernet controller.\n");
+ if (!wait_for_eepro100 (dev)) {
+ printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
- OUTL(dev, 0, SCBPointer);
- OUTW(dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
+ OUTL (dev, 0, SCBPointer);
+ OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
- Done:
+ Done:
return;
}
/* SROM Read.
*/
-static int read_eeprom(struct eth_device* dev, int location, int addr_len)
+static int read_eeprom (struct eth_device *dev, int location, int addr_len)
{
unsigned short retval = 0;
int read_cmd = location | EE_READ_CMD;
int i;
- OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
- OUTW(dev, EE_ENB, SCBeeprom);
+ OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
+ OUTW (dev, EE_ENB, SCBeeprom);
/* Shift the read command bits out. */
- for (i = 12; i >= 0; i--)
- {
+ for (i = 12; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
- OUTW(dev, EE_ENB | dataval, SCBeeprom);
- udelay(1);
- OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
- udelay(1);
+
+ OUTW (dev, EE_ENB | dataval, SCBeeprom);
+ udelay (1);
+ OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
+ udelay (1);
}
- OUTW(dev, EE_ENB, SCBeeprom);
+ OUTW (dev, EE_ENB, SCBeeprom);
- for (i = 15; i >= 0; i--)
- {
- OUTW(dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
- udelay(1);
+ for (i = 15; i >= 0; i--) {
+ OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
+ udelay (1);
retval = (retval << 1) |
- ((INW(dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
- OUTW(dev, EE_ENB, SCBeeprom);
- udelay(1);
+ ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
+ OUTW (dev, EE_ENB, SCBeeprom);
+ udelay (1);
}
/* Terminate the EEPROM access. */
- OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
+ OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
return retval;
}
-static void init_rx_ring(struct eth_device *dev)
+static void init_rx_ring (struct eth_device *dev)
{
int i;
- for (i = 0; i < NUM_RX_DESC; i++)
- {
- rx_ring[i].status = 0;
- rx_ring[i].control = (i == NUM_RX_DESC-1) ? cpu_to_le16(RFD_CONTROL_S) : 0;
- rx_ring[i].link = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
+ for (i = 0; i < NUM_RX_DESC; i++) {
+ rx_ring[i].status = 0;
+ rx_ring[i].control =
+ (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
+ rx_ring[i].link =
+ cpu_to_le32 (phys_to_bus
+ ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
rx_ring[i].rx_buf_addr = 0xffffffff;
- rx_ring[i].count = cpu_to_le32(PKTSIZE_ALIGN << 16);
+ rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
}
rx_next = 0;
}
-static void purge_tx_ring(struct eth_device* dev)
+static void purge_tx_ring (struct eth_device *dev)
{
int i;
- tx_next = 0;
+ tx_next = 0;
tx_threshold = 0x01208000;
- for (i = 0; i < NUM_TX_DESC; i++)
- {
- tx_ring[i].status = 0;
- tx_ring[i].command = 0;
- tx_ring[i].link = 0;
+ for (i = 0; i < NUM_TX_DESC; i++) {
+ tx_ring[i].status = 0;
+ tx_ring[i].command = 0;
+ tx_ring[i].link = 0;
tx_ring[i].tx_desc_addr = 0;
- tx_ring[i].count = 0;
+ tx_ring[i].count = 0;
tx_ring[i].tx_buf_addr0 = 0;
tx_ring[i].tx_buf_size0 = 0;
}
}
-static void read_hw_addr(struct eth_device* dev, bd_t *bis)
+static void read_hw_addr (struct eth_device *dev, bd_t * bis)
{
u16 eeprom[0x40];
u16 sum = 0;
int i, j;
- int addr_len = read_eeprom(dev, 0, 6) == 0xffff ? 8 : 6;
+ int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
+
+ for (j = 0, i = 0; i < 0x40; i++) {
+ u16 value = read_eeprom (dev, i, addr_len);
- for (j = 0, i = 0; i < 0x40; i++)
- {
- u16 value = read_eeprom(dev, i, addr_len);
eeprom[i] = value;
sum += value;
- if (i < 3)
- {
+ if (i < 3) {
dev->enetaddr[j++] = value;
dev->enetaddr[j++] = value >> 8;
}
if (sum != 0xBABA) {
memset (dev->enetaddr, 0, ETH_ALEN);
#ifdef DEBUG
- printf("%s: Invalid EEPROM checksum %#4.4x, "
- "check settings before activating this device!\n",
- dev->name, sum);
+ printf ("%s: Invalid EEPROM checksum %#4.4x, "
+ "check settings before activating this device!\n",
+ dev->name, sum);
#endif
}
}