Use cases
 =========
 
-By itself, the base fs-verity feature only provides integrity
-protection, i.e. detection of accidental (non-malicious) corruption.
+By itself, fs-verity only provides integrity protection, i.e.
+detection of accidental (non-malicious) corruption.
 
 However, because fs-verity makes retrieving the file hash extremely
 efficient, it's primarily meant to be used as a tool to support
 authentication (detection of malicious modifications) or auditing
 (logging file hashes before use).
 
-Trusted userspace code (e.g. operating system code running on a
-read-only partition that is itself authenticated by dm-verity) can
-authenticate the contents of an fs-verity file by using the
-`FS_IOC_MEASURE_VERITY`_ ioctl to retrieve its hash, then verifying a
-digital signature of it.
-
 A standard file hash could be used instead of fs-verity.  However,
 this is inefficient if the file is large and only a small portion may
 be accessed.  This is often the case for Android application package
 must live on a read-write filesystem because they are independently
 updated and potentially user-installed, so dm-verity cannot be used.
 
-The base fs-verity feature is a hashing mechanism only; actually
-authenticating the files may be done by:
-
-* Userspace-only
-
-* Builtin signature verification + userspace policy
-
-  fs-verity optionally supports a simple signature verification
-  mechanism where users can configure the kernel to require that
-  all fs-verity files be signed by a key loaded into a keyring;
-  see `Built-in signature verification`_.
-
-* Integrity Measurement Architecture (IMA)
-
-  IMA supports including fs-verity file digests and signatures in the
-  IMA measurement list and verifying fs-verity based file signatures
-  stored as security.ima xattrs, based on policy.
-
+fs-verity does not mandate a particular scheme for authenticating its
+file hashes.  (Similarly, dm-verity does not mandate a particular
+scheme for authenticating its block device root hashes.)  Options for
+authenticating fs-verity file hashes include:
+
+- Trusted userspace code.  Often, the userspace code that accesses
+  files can be trusted to authenticate them.  Consider e.g. an
+  application that wants to authenticate data files before using them,
+  or an application loader that is part of the operating system (which
+  is already authenticated in a different way, such as by being loaded
+  from a read-only partition that uses dm-verity) and that wants to
+  authenticate applications before loading them.  In these cases, this
+  trusted userspace code can authenticate a file's contents by
+  retrieving its fs-verity digest using `FS_IOC_MEASURE_VERITY`_, then
+  verifying a signature of it using any userspace cryptographic
+  library that supports digital signatures.
+
+- Integrity Measurement Architecture (IMA).  IMA supports fs-verity
+  file digests as an alternative to its traditional full file digests.
+  "IMA appraisal" enforces that files contain a valid, matching
+  signature in their "security.ima" extended attribute, as controlled
+  by the IMA policy.  For more information, see the IMA documentation.
+
+- Trusted userspace code in combination with `Built-in signature
+  verification`_.  This approach should be used only with great care.
 
 User API
 ========
     };
 
 This structure contains the parameters of the Merkle tree to build for
-the file, and optionally contains a signature.  It must be initialized
-as follows:
+the file.  It must be initialized as follows:
 
 - ``version`` must be 1.
 - ``hash_algorithm`` must be the identifier for the hash algorithm to
   file or device.  Currently the maximum salt size is 32 bytes.
 - ``salt_ptr`` is the pointer to the salt, or NULL if no salt is
   provided.
-- ``sig_size`` is the size of the signature in bytes, or 0 if no
-  signature is provided.  Currently the signature is (somewhat
-  arbitrarily) limited to 16128 bytes.  See `Built-in signature
-  verification`_ for more information.
-- ``sig_ptr``  is the pointer to the signature, or NULL if no
-  signature is provided.
+- ``sig_size`` is the size of the builtin signature in bytes, or 0 if no
+  builtin signature is provided.  Currently the builtin signature is
+  (somewhat arbitrarily) limited to 16128 bytes.
+- ``sig_ptr``  is the pointer to the builtin signature, or NULL if no
+  builtin signature is provided.  A builtin signature is only needed
+  if the `Built-in signature verification`_ feature is being used.  It
+  is not needed for IMA appraisal, and it is not needed if the file
+  signature is being handled entirely in userspace.
 - All reserved fields must be zeroed.
 
 FS_IOC_ENABLE_VERITY causes the filesystem to build a Merkle tree for
 FS_IOC_ENABLE_VERITY can fail with the following errors:
 
 - ``EACCES``: the process does not have write access to the file
-- ``EBADMSG``: the signature is malformed
+- ``EBADMSG``: the builtin signature is malformed
 - ``EBUSY``: this ioctl is already running on the file
 - ``EEXIST``: the file already has verity enabled
 - ``EFAULT``: the caller provided inaccessible memory
   reserved bits are set; or the file descriptor refers to neither a
   regular file nor a directory.
 - ``EISDIR``: the file descriptor refers to a directory
-- ``EKEYREJECTED``: the signature doesn't match the file
-- ``EMSGSIZE``: the salt or signature is too long
-- ``ENOKEY``: the fs-verity keyring doesn't contain the certificate
-  needed to verify the signature
+- ``EKEYREJECTED``: the builtin signature doesn't match the file
+- ``EMSGSIZE``: the salt or builtin signature is too long
+- ``ENOKEY``: the ".fs-verity" keyring doesn't contain the certificate
+  needed to verify the builtin signature
 - ``ENOPKG``: fs-verity recognizes the hash algorithm, but it's not
   available in the kernel's crypto API as currently configured (e.g.
   for SHA-512, missing CONFIG_CRYPTO_SHA512).
   support; or the filesystem superblock has not had the 'verity'
   feature enabled on it; or the filesystem does not support fs-verity
   on this file.  (See `Filesystem support`_.)
-- ``EPERM``: the file is append-only; or, a signature is required and
-  one was not provided.
+- ``EPERM``: the file is append-only; or, a builtin signature is
+  required and one was not provided.
 - ``EROFS``: the filesystem is read-only
 - ``ETXTBSY``: someone has the file open for writing.  This can be the
   caller's file descriptor, another open file descriptor, or the file
 - ``FS_VERITY_METADATA_TYPE_DESCRIPTOR`` reads the fs-verity
   descriptor.  See `fs-verity descriptor`_.
 
-- ``FS_VERITY_METADATA_TYPE_SIGNATURE`` reads the signature which was
-  passed to FS_IOC_ENABLE_VERITY, if any.  See `Built-in signature
-  verification`_.
+- ``FS_VERITY_METADATA_TYPE_SIGNATURE`` reads the builtin signature
+  which was passed to FS_IOC_ENABLE_VERITY, if any.  See `Built-in
+  signature verification`_.
 
 The semantics are similar to those of ``pread()``.  ``offset``
 specifies the offset in bytes into the metadata item to read from, and
   overflowed
 - ``ENODATA``: the file is not a verity file, or
   FS_VERITY_METADATA_TYPE_SIGNATURE was requested but the file doesn't
-  have a built-in signature
+  have a builtin signature
 - ``ENOTTY``: this type of filesystem does not implement fs-verity, or
   this ioctl is not yet implemented on it
 - ``EOPNOTSUPP``: the kernel was not configured with fs-verity
   with EIO (for read()) or SIGBUS (for mmap() reads).
 
 - If the sysctl "fs.verity.require_signatures" is set to 1 and the
-  file is not signed by a key in the fs-verity keyring, then opening
-  the file will fail.  See `Built-in signature verification`_.
+  file is not signed by a key in the ".fs-verity" keyring, then
+  opening the file will fail.  See `Built-in signature verification`_.
 
 Direct access to the Merkle tree is not supported.  Therefore, if a
 verity file is copied, or is backed up and restored, then it will lose
 Built-in signature verification
 ===============================
 
-With CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y, fs-verity supports putting
-a portion of an authentication policy (see `Use cases`_) in the
-kernel.  Specifically, it adds support for:
+CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y adds supports for in-kernel
+verification of fs-verity builtin signatures.
+
+**IMPORTANT**!  Please take great care before using this feature.
+It is not the only way to do signatures with fs-verity, and the
+alternatives (such as userspace signature verification, and IMA
+appraisal) can be much better.  It's also easy to fall into a trap
+of thinking this feature solves more problems than it actually does.
+
+Enabling this option adds the following:
 
-1. At fs-verity module initialization time, a keyring ".fs-verity" is
-   created.  The root user can add trusted X.509 certificates to this
-   keyring using the add_key() system call, then (when done)
-   optionally use keyctl_restrict_keyring() to prevent additional
-   certificates from being added.
+1. At boot time, the kernel creates a keyring named ".fs-verity".  The
+   root user can add trusted X.509 certificates to this keyring using
+   the add_key() system call.
 
 2. `FS_IOC_ENABLE_VERITY`_ accepts a pointer to a PKCS#7 formatted
    detached signature in DER format of the file's fs-verity digest.
-   On success, this signature is persisted alongside the Merkle tree.
-   Then, any time the file is opened, the kernel will verify the
+   On success, the ioctl persists the signature alongside the Merkle
+   tree.  Then, any time the file is opened, the kernel verifies the
    file's actual digest against this signature, using the certificates
    in the ".fs-verity" keyring.
 
    When set to 1, the kernel requires that all verity files have a
    correctly signed digest as described in (2).
 
-fs-verity file digests must be signed in the following format, which
-is similar to the structure used by `FS_IOC_MEASURE_VERITY`_::
+The data that the signature as described in (2) must be a signature of
+is the fs-verity file digest in the following format::
 
     struct fsverity_formatted_digest {
             char magic[8];                  /* must be "FSVerity" */
             __u8 digest[];
     };
 
-fs-verity's built-in signature verification support is meant as a
-relatively simple mechanism that can be used to provide some level of
-authenticity protection for verity files, as an alternative to doing
-the signature verification in userspace or using IMA-appraisal.
-However, with this mechanism, userspace programs still need to check
-that the verity bit is set, and there is no protection against verity
-files being swapped around.
+That's it.  It should be emphasized again that fs-verity builtin
+signatures are not the only way to do signatures with fs-verity.  See
+`Use cases`_ for an overview of ways in which fs-verity can be used.
+fs-verity builtin signatures have some major limitations that should
+be carefully considered before using them:
+
+- Builtin signature verification does *not* make the kernel enforce
+  that any files actually have fs-verity enabled.  Thus, it is not a
+  complete authentication policy.  Currently, if it is used, the only
+  way to complete the authentication policy is for trusted userspace
+  code to explicitly check whether files have fs-verity enabled with a
+  signature before they are accessed.  (With
+  fs.verity.require_signatures=1, just checking whether fs-verity is
+  enabled suffices.)  But, in this case the trusted userspace code
+  could just store the signature alongside the file and verify it
+  itself using a cryptographic library, instead of using this feature.
+
+- A file's builtin signature can only be set at the same time that
+  fs-verity is being enabled on the file.  Changing or deleting the
+  builtin signature later requires re-creating the file.
+
+- Builtin signature verification uses the same set of public keys for
+  all fs-verity enabled files on the system.  Different keys cannot be
+  trusted for different files; each key is all or nothing.
+
+- The sysctl fs.verity.require_signatures applies system-wide.
+  Setting it to 1 only works when all users of fs-verity on the system
+  agree that it should be set to 1.  This limitation can prevent
+  fs-verity from being used in cases where it would be helpful.
+
+- Builtin signature verification can only use signature algorithms
+  that are supported by the kernel.  For example, the kernel does not
+  yet support Ed25519, even though this is often the signature
+  algorithm that is recommended for new cryptographic designs.
+
+- fs-verity builtin signatures are in PKCS#7 format, and the public
+  keys are in X.509 format.  These formats are commonly used,
+  including by some other kernel features (which is why the fs-verity
+  builtin signatures use them), and are very feature rich.
+  Unfortunately, history has shown that code that parses and handles
+  these formats (which are from the 1990s and are based on ASN.1)
+  often has vulnerabilities as a result of their complexity.  This
+  complexity is not inherent to the cryptography itself.
+
+  fs-verity users who do not need advanced features of X.509 and
+  PKCS#7 should strongly consider using simpler formats, such as plain
+  Ed25519 keys and signatures, and verifying signatures in userspace.
+
+  fs-verity users who choose to use X.509 and PKCS#7 anyway should
+  still consider that verifying those signatures in userspace is more
+  flexible (for other reasons mentioned earlier in this document) and
+  eliminates the need to enable CONFIG_FS_VERITY_BUILTIN_SIGNATURES
+  and its associated increase in kernel attack surface.  In some cases
+  it can even be necessary, since advanced X.509 and PKCS#7 features
+  do not always work as intended with the kernel.  For example, the
+  kernel does not check X.509 certificate validity times.
+
+  Note: IMA appraisal, which supports fs-verity, does not use PKCS#7
+  for its signatures, so it partially avoids the issues discussed
+  here.  IMA appraisal does use X.509.
 
 Filesystem support
 ==================