+.. SPDX-License-Identifier: GPL-2.0
+
+==================================
relay interface (formerly relayfs)
==================================
access to relay channel buffer data. Here are the file operations
that are available and some comments regarding their behavior:
+=========== ============================================================
open() enables user to open an _existing_ channel buffer.
mmap() results in channel buffer being mapped into the caller's
close() decrements the channel buffer's refcount. When the refcount
reaches 0, i.e. when no process or kernel client has the
buffer open, the channel buffer is freed.
+=========== ============================================================
In order for a user application to make use of relay files, the
-host filesystem must be mounted. For example,
+host filesystem must be mounted. For example::
mount -t debugfs debugfs /sys/kernel/debug
-NOTE: the host filesystem doesn't need to be mounted for kernel
+.. Note::
+
+ the host filesystem doesn't need to be mounted for kernel
clients to create or use channels - it only needs to be
mounted when user space applications need access to the buffer
data.
Here's a summary of the API the relay interface provides to in-kernel clients:
TBD(curr. line MT:/API/)
- channel management functions:
+ channel management functions::
relay_open(base_filename, parent, subbuf_size, n_subbufs,
callbacks, private_data)
relay_flush(chan)
relay_reset(chan)
- channel management typically called on instigation of userspace:
+ channel management typically called on instigation of userspace::
relay_subbufs_consumed(chan, cpu, subbufs_consumed)
- write functions:
+ write functions::
relay_write(chan, data, length)
__relay_write(chan, data, length)
relay_reserve(chan, length)
- callbacks:
+ callbacks::
subbuf_start(buf, subbuf, prev_subbuf, prev_padding)
buf_mapped(buf, filp)
create_buf_file(filename, parent, mode, buf, is_global)
remove_buf_file(dentry)
- helper functions:
+ helper functions::
relay_buf_full(buf)
subbuf_start_reserve(buf, length)
relay_close().
Here are some typical definitions for these callbacks, in this case
-using debugfs:
-
-/*
- * create_buf_file() callback. Creates relay file in debugfs.
- */
-static struct dentry *create_buf_file_handler(const char *filename,
- struct dentry *parent,
- umode_t mode,
- struct rchan_buf *buf,
- int *is_global)
-{
- return debugfs_create_file(filename, mode, parent, buf,
- &relay_file_operations);
-}
-
-/*
- * remove_buf_file() callback. Removes relay file from debugfs.
- */
-static int remove_buf_file_handler(struct dentry *dentry)
-{
- debugfs_remove(dentry);
-
- return 0;
-}
-
-/*
- * relay interface callbacks
- */
-static struct rchan_callbacks relay_callbacks =
-{
- .create_buf_file = create_buf_file_handler,
- .remove_buf_file = remove_buf_file_handler,
-};
-
-And an example relay_open() invocation using them:
+using debugfs::
+
+ /*
+ * create_buf_file() callback. Creates relay file in debugfs.
+ */
+ static struct dentry *create_buf_file_handler(const char *filename,
+ struct dentry *parent,
+ umode_t mode,
+ struct rchan_buf *buf,
+ int *is_global)
+ {
+ return debugfs_create_file(filename, mode, parent, buf,
+ &relay_file_operations);
+ }
+
+ /*
+ * remove_buf_file() callback. Removes relay file from debugfs.
+ */
+ static int remove_buf_file_handler(struct dentry *dentry)
+ {
+ debugfs_remove(dentry);
+
+ return 0;
+ }
+
+ /*
+ * relay interface callbacks
+ */
+ static struct rchan_callbacks relay_callbacks =
+ {
+ .create_buf_file = create_buf_file_handler,
+ .remove_buf_file = remove_buf_file_handler,
+ };
+
+And an example relay_open() invocation using them::
chan = relay_open("cpu", NULL, SUBBUF_SIZE, N_SUBBUFS, &relay_callbacks, NULL);
To implement 'no-overwrite' mode, the userspace client would provide
an implementation of the subbuf_start() callback something like the
-following:
+following::
-static int subbuf_start(struct rchan_buf *buf,
- void *subbuf,
- void *prev_subbuf,
- unsigned int prev_padding)
-{
- if (prev_subbuf)
- *((unsigned *)prev_subbuf) = prev_padding;
+ static int subbuf_start(struct rchan_buf *buf,
+ void *subbuf,
+ void *prev_subbuf,
+ unsigned int prev_padding)
+ {
+ if (prev_subbuf)
+ *((unsigned *)prev_subbuf) = prev_padding;
- if (relay_buf_full(buf))
- return 0;
+ if (relay_buf_full(buf))
+ return 0;
- subbuf_start_reserve(buf, sizeof(unsigned int));
+ subbuf_start_reserve(buf, sizeof(unsigned int));
- return 1;
-}
+ return 1;
+ }
If the current buffer is full, i.e. all sub-buffers remain unconsumed,
the callback returns 0 to indicate that the buffer switch should not
buffer switch can continue.
The implementation of the subbuf_start() callback for 'overwrite' mode
-would be very similar:
+would be very similar::
-static int subbuf_start(struct rchan_buf *buf,
- void *subbuf,
- void *prev_subbuf,
- size_t prev_padding)
-{
- if (prev_subbuf)
- *((unsigned *)prev_subbuf) = prev_padding;
+ static int subbuf_start(struct rchan_buf *buf,
+ void *subbuf,
+ void *prev_subbuf,
+ size_t prev_padding)
+ {
+ if (prev_subbuf)
+ *((unsigned *)prev_subbuf) = prev_padding;
- subbuf_start_reserve(buf, sizeof(unsigned int));
+ subbuf_start_reserve(buf, sizeof(unsigned int));
- return 1;
-}
+ return 1;
+ }
In this case, the relay_buf_full() check is meaningless and the
callback always returns 1, causing the buffer switch to occur