* Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
  * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
  *
+ * Optimization for constant divisors on 32-bit machines:
+ * Copyright (C) 2006-2015 Nicolas Pitre
+ *
  * The semantics of do_div() are:
  *
  * uint32_t do_div(uint64_t *n, uint32_t base)
 
 #include <linux/log2.h>
 
+/*
+ * If the divisor happens to be constant, we determine the appropriate
+ * inverse at compile time to turn the division into a few inline
+ * multiplications which ought to be much faster. And yet only if compiling
+ * with a sufficiently recent gcc version to perform proper 64-bit constant
+ * propagation.
+ *
+ * (It is unfortunate that gcc doesn't perform all this internally.)
+ */
+
+#ifndef __div64_const32_is_OK
+#define __div64_const32_is_OK (__GNUC__ >= 4)
+#endif
+
+#define __div64_const32(n, ___b)                                       \
+({                                                                     \
+       /*                                                              \
+        * Multiplication by reciprocal of b: n / b = n * (p / b) / p   \
+        *                                                              \
+        * We rely on the fact that most of this code gets optimized    \
+        * away at compile time due to constant propagation and only    \
+        * a few multiplication instructions should remain.             \
+        * Hence this monstrous macro (static inline doesn't always     \
+        * do the trick here).                                          \
+        */                                                             \
+       uint64_t ___res, ___x, ___t, ___m, ___n = (n);                  \
+       uint32_t ___p, ___bias, ___m_lo, ___m_hi, ___n_lo, ___n_hi;     \
+                                                                       \
+       /* determine MSB of b */                                        \
+       ___p = 1 << ilog2(___b);                                        \
+                                                                       \
+       /* compute m = ((p << 64) + b - 1) / b */                       \
+       ___m = (~0ULL / ___b) * ___p;                                   \
+       ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;        \
+                                                                       \
+       /* one less than the dividend with highest result */            \
+       ___x = ~0ULL / ___b * ___b - 1;                                 \
+                                                                       \
+       /* test our ___m with res = m * x / (p << 64) */                \
+       ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;     \
+       ___t = ___res += (___m & 0xffffffff) * (___x >> 32);            \
+       ___res += (___x & 0xffffffff) * (___m >> 32);                   \
+       ___t = (___res < ___t) ? (1ULL << 32) : 0;                      \
+       ___res = (___res >> 32) + ___t;                                 \
+       ___res += (___m >> 32) * (___x >> 32);                          \
+       ___res /= ___p;                                                 \
+                                                                       \
+       /* Now sanitize and optimize what we've got. */                 \
+       if (~0ULL % (___b / (___b & -___b)) == 0) {                     \
+               /* special case, can be simplified to ... */            \
+               ___n /= (___b & -___b);                                 \
+               ___m = ~0ULL / (___b / (___b & -___b));                 \
+               ___p = 1;                                               \
+               ___bias = 1;                                            \
+       } else if (___res != ___x / ___b) {                             \
+               /*                                                      \
+                * We can't get away without a bias to compensate       \
+                * for bit truncation errors.  To avoid it we'd need an \
+                * additional bit to represent m which would overflow   \
+                * a 64-bit variable.                                   \
+                *                                                      \
+                * Instead we do m = p / b and n / b = (n * m + m) / p. \
+                */                                                     \
+               ___bias = 1;                                            \
+               /* Compute m = (p << 64) / b */                         \
+               ___m = (~0ULL / ___b) * ___p;                           \
+               ___m += ((~0ULL % ___b + 1) * ___p) / ___b;             \
+       } else {                                                        \
+               /*                                                      \
+                * Reduce m / p, and try to clear bit 31 of m when      \
+                * possible, otherwise that'll need extra overflow      \
+                * handling later.                                      \
+                */                                                     \
+               uint32_t ___bits = -(___m & -___m);                     \
+               ___bits |= ___m >> 32;                                  \
+               ___bits = (~___bits) << 1;                              \
+               /*                                                      \
+                * If ___bits == 0 then setting bit 31 is  unavoidable. \
+                * Simply apply the maximum possible reduction in that  \
+                * case. Otherwise the MSB of ___bits indicates the     \
+                * best reduction we should apply.                      \
+                */                                                     \
+               if (!___bits) {                                         \
+                       ___p /= (___m & -___m);                         \
+                       ___m /= (___m & -___m);                         \
+               } else {                                                \
+                       ___p >>= ilog2(___bits);                        \
+                       ___m >>= ilog2(___bits);                        \
+               }                                                       \
+               /* No bias needed. */                                   \
+               ___bias = 0;                                            \
+       }                                                               \
+                                                                       \
+       /*                                                              \
+        * Now we have a combination of 2 conditions:                   \
+        *                                                              \
+        * 1) whether or not we need to apply a bias, and               \
+        *                                                              \
+        * 2) whether or not there might be an overflow in the cross    \
+        *    product determined by (___m & ((1 << 63) | (1 << 31))).   \
+        *                                                              \
+        * Select the best way to do (m_bias + m * n) / (p << 64).      \
+        * From now on there will be actual runtime code generated.     \
+        */                                                             \
+                                                                       \
+       ___m_lo = ___m;                                                 \
+       ___m_hi = ___m >> 32;                                           \
+       ___n_lo = ___n;                                                 \
+       ___n_hi = ___n >> 32;                                           \
+                                                                       \
+       if (!___bias) {                                                 \
+               ___res = ((uint64_t)___m_lo * ___n_lo) >> 32;           \
+       } else if (!(___m & ((1ULL << 63) | (1ULL << 31)))) {           \
+               ___res = (___m + (uint64_t)___m_lo * ___n_lo) >> 32;    \
+       } else {                                                        \
+               ___res = ___m + (uint64_t)___m_lo * ___n_lo;            \
+               ___t = (___res < ___m) ? (1ULL << 32) : 0;              \
+               ___res = (___res >> 32) + ___t;                         \
+       }                                                               \
+                                                                       \
+       if (!(___m & ((1ULL << 63) | (1ULL << 31)))) {                  \
+               ___res += (uint64_t)___m_lo * ___n_hi;                  \
+               ___res += (uint64_t)___m_hi * ___n_lo;                  \
+               ___res >>= 32;                                          \
+       } else {                                                        \
+               ___t = ___res += (uint64_t)___m_lo * ___n_hi;           \
+               ___res += (uint64_t)___m_hi * ___n_lo;                  \
+               ___t = (___res < ___t) ? (1ULL << 32) : 0;              \
+               ___res = (___res >> 32) + ___t;                         \
+       }                                                               \
+                                                                       \
+       ___res += (uint64_t)___m_hi * ___n_hi;                          \
+                                                                       \
+       ___res /= ___p;                                                 \
+})
+
 extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
 
 /* The unnecessary pointer compare is there
            is_power_of_2(__base)) {                    \
                __rem = (n) & (__base - 1);             \
                (n) >>= ilog2(__base);                  \
+       } else if (__div64_const32_is_OK &&             \
+                  __builtin_constant_p(__base) &&      \
+                  __base != 0) {                       \
+               uint32_t __res_lo, __n_lo = (n);        \
+               (n) = __div64_const32(n, __base);       \
+               /* the remainder can be computed with 32-bit regs */ \
+               __res_lo = (n);                         \
+               __rem = __n_lo - __res_lo * __base;     \
        } else if (likely(((n) >> 32) == 0)) {          \
                __rem = (uint32_t)(n) % __base;         \
                (n) = (uint32_t)(n) / __base;           \