Freeing Huge Pages
==================
-Huge page freeing is performed by the routine free_huge_page(). This routine
-is the destructor for hugetlbfs compound pages. As a result, it is only
-passed a pointer to the page struct. When a huge page is freed, reservation
-accounting may need to be performed. This would be the case if the page was
-associated with a subpool that contained reserves, or the page is being freed
-on an error path where a global reserve count must be restored.
+Huge pages are freed by free_huge_folio(). It is only passed a pointer
+to the folio as it is called from the generic MM code. When a huge page
+is freed, reservation accounting may need to be performed. This would
+be the case if the page was associated with a subpool that contained
+reserves, or the page is being freed on an error path where a global
+reserve count must be restored.
The page->private field points to any subpool associated with the page.
If the PagePrivate flag is set, it indicates the global reserve count should
page is allocated but before it is instantiated. In this case, the page
allocation has consumed the reservation and made the appropriate subpool,
reservation map and global count adjustments. If the page is freed at this
-time (before instantiation and clearing of PagePrivate), then free_huge_page
+time (before instantiation and clearing of PagePrivate), then free_huge_folio
will increment the global reservation count. However, the reservation map
indicates the reservation was consumed. This resulting inconsistent state
will cause the 'leak' of a reserved huge page. The global reserve count will
zeroed = folio_put_testzero(folio);
if (unlikely(!zeroed))
/*
- * It is VERY unlikely soneone else has taken a ref on
- * the page. In this case, we simply return as the
- * hugetlb destructor (free_huge_page) will be called
- * when this other ref is dropped.
+ * It is VERY unlikely soneone else has taken a ref
+ * on the folio. In this case, we simply return as
+ * free_huge_folio() will be called when this other ref
+ * is dropped.
*/
return;
return NULL;
}
-void free_huge_page(struct page *page)
+void free_huge_folio(struct folio *folio)
{
/*
* Can't pass hstate in here because it is called from the
* compound page destructor.
*/
- struct folio *folio = page_folio(page);
struct hstate *h = folio_hstate(folio);
int nid = folio_nid(folio);
struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
spin_unlock_irqrestore(&hugetlb_lock, flags);
update_and_free_hugetlb_folio(h, folio, true);
} else {
- arch_clear_hugepage_flags(page);
+ arch_clear_hugepage_flags(&folio->page);
enqueue_hugetlb_folio(h, folio);
spin_unlock_irqrestore(&hugetlb_lock, flags);
}
folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
nodes_allowed, node_alloc_noretry);
if (folio) {
- free_huge_page(&folio->page); /* free it into the hugepage allocator */
+ free_huge_folio(folio); /* free it into the hugepage allocator */
return 1;
}
}
* We could have raced with the pool size change.
* Double check that and simply deallocate the new page
* if we would end up overcommiting the surpluses. Abuse
- * temporary page to workaround the nasty free_huge_page
+ * temporary page to workaround the nasty free_huge_folio
* codeflow
*/
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
folio_set_hugetlb_temporary(folio);
spin_unlock_irq(&hugetlb_lock);
- free_huge_page(&folio->page);
+ free_huge_folio(folio);
return NULL;
}
__must_hold(&hugetlb_lock)
{
LIST_HEAD(surplus_list);
- struct folio *folio;
- struct page *page, *tmp;
+ struct folio *folio, *tmp;
int ret;
long i;
long needed, allocated;
ret = 0;
/* Free the needed pages to the hugetlb pool */
- list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
+ list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
if ((--needed) < 0)
break;
/* Add the page to the hugetlb allocator */
- enqueue_hugetlb_folio(h, page_folio(page));
+ enqueue_hugetlb_folio(h, folio);
}
free:
spin_unlock_irq(&hugetlb_lock);
/*
* Free unnecessary surplus pages to the buddy allocator.
- * Pages have no ref count, call free_huge_page directly.
+ * Pages have no ref count, call free_huge_folio directly.
*/
- list_for_each_entry_safe(page, tmp, &surplus_list, lru)
- free_huge_page(page);
+ list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
+ free_huge_folio(folio);
spin_lock_irq(&hugetlb_lock);
return ret;
* 2) No reservation was in place for the page, so hugetlb_restore_reserve is
* not set. However, alloc_hugetlb_folio always updates the reserve map.
*
- * In case 1, free_huge_page later in the error path will increment the
- * global reserve count. But, free_huge_page does not have enough context
+ * In case 1, free_huge_folio later in the error path will increment the
+ * global reserve count. But, free_huge_folio does not have enough context
* to adjust the reservation map. This case deals primarily with private
* mappings. Adjust the reserve map here to be consistent with global
- * reserve count adjustments to be made by free_huge_page. Make sure the
+ * reserve count adjustments to be made by free_huge_folio. Make sure the
* reserve map indicates there is a reservation present.
*
* In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
* Rare out of memory condition in reserve map
* manipulation. Clear hugetlb_restore_reserve so
* that global reserve count will not be incremented
- * by free_huge_page. This will make it appear
+ * by free_huge_folio. This will make it appear
* as though the reservation for this folio was
* consumed. This may prevent the task from
* faulting in the folio at a later time. This
if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
WARN_ON(folio_test_reserved(folio));
prep_new_hugetlb_folio(h, folio, folio_nid(folio));
- free_huge_page(page); /* add to the hugepage allocator */
+ free_huge_folio(folio); /* add to the hugepage allocator */
} else {
/* VERY unlikely inflated ref count on a tail page */
free_gigantic_folio(folio, huge_page_order(h));
&node_states[N_MEMORY], NULL);
if (!folio)
break;
- free_huge_page(&folio->page); /* free it into the hugepage allocator */
+ free_huge_folio(folio); /* free it into the hugepage allocator */
}
cond_resched();
}
while (count > persistent_huge_pages(h)) {
/*
* If this allocation races such that we no longer need the
- * page, free_huge_page will handle it by freeing the page
+ * page, free_huge_folio will handle it by freeing the page
* and reducing the surplus.
*/
spin_unlock_irq(&hugetlb_lock);
prep_compound_page(subpage, target_hstate->order);
folio_change_private(inner_folio, NULL);
prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
- free_huge_page(subpage);
+ free_huge_folio(inner_folio);
}
mutex_unlock(&target_hstate->resize_lock);