tristate "Asymmetric public-key crypto algorithm subtype"
        select MPILIB
        select PUBLIC_KEY_ALGO_RSA
+       select CRYPTO_HASH_INFO
        help
          This option provides support for asymmetric public key type handling.
          If signature generation and/or verification are to be used,
 
 };
 EXPORT_SYMBOL_GPL(pkey_algo);
 
-const char *const pkey_hash_algo_name[PKEY_HASH__LAST] = {
-       [PKEY_HASH_MD4]         = "md4",
-       [PKEY_HASH_MD5]         = "md5",
-       [PKEY_HASH_SHA1]        = "sha1",
-       [PKEY_HASH_RIPE_MD_160] = "rmd160",
-       [PKEY_HASH_SHA256]      = "sha256",
-       [PKEY_HASH_SHA384]      = "sha384",
-       [PKEY_HASH_SHA512]      = "sha512",
-       [PKEY_HASH_SHA224]      = "sha224",
-};
-EXPORT_SYMBOL_GPL(pkey_hash_algo_name);
-
 const char *const pkey_id_type_name[PKEY_ID_TYPE__LAST] = {
        [PKEY_ID_PGP]           = "PGP",
        [PKEY_ID_X509]          = "X509",
 
        size_t size;
 } RSA_ASN1_templates[PKEY_HASH__LAST] = {
 #define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) }
-       [PKEY_HASH_MD5]         = _(MD5),
-       [PKEY_HASH_SHA1]        = _(SHA1),
-       [PKEY_HASH_RIPE_MD_160] = _(RIPE_MD_160),
-       [PKEY_HASH_SHA256]      = _(SHA256),
-       [PKEY_HASH_SHA384]      = _(SHA384),
-       [PKEY_HASH_SHA512]      = _(SHA512),
-       [PKEY_HASH_SHA224]      = _(SHA224),
+       [HASH_ALGO_MD5]         = _(MD5),
+       [HASH_ALGO_SHA1]        = _(SHA1),
+       [HASH_ALGO_RIPE_MD_160] = _(RIPE_MD_160),
+       [HASH_ALGO_SHA256]      = _(SHA256),
+       [HASH_ALGO_SHA384]      = _(SHA384),
+       [HASH_ALGO_SHA512]      = _(SHA512),
+       [HASH_ALGO_SHA224]      = _(SHA224),
 #undef _
 };
 
 
                return -ENOPKG; /* Unsupported combination */
 
        case OID_md4WithRSAEncryption:
-               ctx->cert->sig.pkey_hash_algo = PKEY_HASH_MD5;
+               ctx->cert->sig.pkey_hash_algo = HASH_ALGO_MD5;
                ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
                break;
 
        case OID_sha1WithRSAEncryption:
-               ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA1;
+               ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA1;
                ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
                break;
 
        case OID_sha256WithRSAEncryption:
-               ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA256;
+               ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA256;
                ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
                break;
 
        case OID_sha384WithRSAEncryption:
-               ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA384;
+               ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA384;
                ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
                break;
 
        case OID_sha512WithRSAEncryption:
-               ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA512;
+               ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA512;
                ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
                break;
 
        case OID_sha224WithRSAEncryption:
-               ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA224;
+               ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA224;
                ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
                break;
        }
 
        char            *authority;             /* Authority key fingerprint as hex */
        struct tm       valid_from;
        struct tm       valid_to;
+       enum pkey_algo  pkey_algo : 8;          /* Public key algorithm */
+       enum hash_algo sig_hash_algo : 8;       /* Signature hash algorithm */
        const void      *tbs;                   /* Signed data */
        unsigned        tbs_size;               /* Size of signed data */
        unsigned        raw_sig_size;           /* Size of sigature */
 
        /* Allocate the hashing algorithm we're going to need and find out how
         * big the hash operational data will be.
         */
-       tfm = crypto_alloc_shash(pkey_hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
+       tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
        if (IS_ERR(tfm))
                return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
 
            cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
            !pkey_algo[cert->pub->pkey_algo] ||
            !pkey_algo[cert->sig.pkey_algo] ||
-           !pkey_hash_algo_name[cert->sig.pkey_hash_algo]) {
+           !hash_algo_name[cert->sig.pkey_hash_algo]) {
                ret = -ENOPKG;
                goto error_free_cert;
        }
                 cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
                 cert->valid_to.tm_mday, cert->valid_to.tm_hour,
                 cert->valid_to.tm_min,  cert->valid_to.tm_sec);
-       pr_devel("Cert Signature: %s + %s\n",
-                pkey_algo_name[cert->sig.pkey_algo],
-                pkey_hash_algo_name[cert->sig.pkey_hash_algo]);
+       pr_devel("Cert Signature: %s\n",
+                hash_algo_name[cert->sig.pkey_hash_algo]);
 
        if (!cert->fingerprint) {
                pr_warn("Cert for '%s' must have a SubjKeyId extension\n",
 
 #define _LINUX_PUBLIC_KEY_H
 
 #include <linux/mpi.h>
+#include <crypto/hash_info.h>
 
 enum pkey_algo {
        PKEY_ALGO_DSA,
 extern const char *const pkey_algo_name[PKEY_ALGO__LAST];
 extern const struct public_key_algorithm *pkey_algo[PKEY_ALGO__LAST];
 
-enum pkey_hash_algo {
-       PKEY_HASH_MD4,
-       PKEY_HASH_MD5,
-       PKEY_HASH_SHA1,
-       PKEY_HASH_RIPE_MD_160,
-       PKEY_HASH_SHA256,
-       PKEY_HASH_SHA384,
-       PKEY_HASH_SHA512,
-       PKEY_HASH_SHA224,
-       PKEY_HASH__LAST
-};
-
-extern const char *const pkey_hash_algo_name[PKEY_HASH__LAST];
+/* asymmetric key implementation supports only up to SHA224 */
+#define PKEY_HASH__LAST                (HASH_ALGO_SHA224 + 1)
 
 enum pkey_id_type {
        PKEY_ID_PGP,            /* OpenPGP generated key ID */
        u8 digest_size;                 /* Number of bytes in digest */
        u8 nr_mpi;                      /* Occupancy of mpi[] */
        enum pkey_algo pkey_algo : 8;
-       enum pkey_hash_algo pkey_hash_algo : 8;
+       enum hash_algo pkey_hash_algo : 8;
        union {
                MPI mpi[2];
                struct {
 
  */
 struct module_signature {
        u8      algo;           /* Public-key crypto algorithm [enum pkey_algo] */
-       u8      hash;           /* Digest algorithm [enum pkey_hash_algo] */
+       u8      hash;           /* Digest algorithm [enum hash_algo] */
        u8      id_type;        /* Key identifier type [enum pkey_id_type] */
        u8      signer_len;     /* Length of signer's name */
        u8      key_id_len;     /* Length of key identifier */
 /*
  * Digest the module contents.
  */
-static struct public_key_signature *mod_make_digest(enum pkey_hash_algo hash,
+static struct public_key_signature *mod_make_digest(enum hash_algo hash,
                                                    const void *mod,
                                                    unsigned long modlen)
 {
        /* Allocate the hashing algorithm we're going to need and find out how
         * big the hash operational data will be.
         */
-       tfm = crypto_alloc_shash(pkey_hash_algo_name[hash], 0, 0);
+       tfm = crypto_alloc_shash(hash_algo_name[hash], 0, 0);
        if (IS_ERR(tfm))
                return (PTR_ERR(tfm) == -ENOENT) ? ERR_PTR(-ENOPKG) : ERR_CAST(tfm);
 
                return -ENOPKG;
 
        if (ms.hash >= PKEY_HASH__LAST ||
-           !pkey_hash_algo_name[ms.hash])
+           !hash_algo_name[ms.hash])
                return -ENOPKG;
 
        key = request_asymmetric_key(sig, ms.signer_len,