z2 = arg_info(op->args[2])->z_mask;
ctx->z_mask = z1 & z2;
+ /*
+ * Sign repetitions are perforce all identical, whether they are 1 or 0.
+ * Bitwise operations preserve the relative quantity of the repetitions.
+ */
+ ctx->s_mask = arg_info(op->args[1])->s_mask
+ & arg_info(op->args[2])->s_mask;
+
/*
* Known-zeros does not imply known-ones. Therefore unless
* arg2 is constant, we can't infer affected bits from it.
}
ctx->z_mask = z1;
+ ctx->s_mask = arg_info(op->args[1])->s_mask
+ & arg_info(op->args[2])->s_mask;
return fold_masks(ctx, op);
}
fold_xi_to_not(ctx, op, 0)) {
return true;
}
+
+ ctx->s_mask = arg_info(op->args[1])->s_mask
+ & arg_info(op->args[2])->s_mask;
return false;
}
ctx->z_mask = arg_info(op->args[3])->z_mask
| arg_info(op->args[4])->z_mask;
+ ctx->s_mask = arg_info(op->args[3])->s_mask
+ & arg_info(op->args[4])->s_mask;
if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) {
uint64_t tv = arg_info(op->args[3])->val;
fold_xi_to_not(ctx, op, -1)) {
return true;
}
+
+ ctx->s_mask = arg_info(op->args[1])->s_mask
+ & arg_info(op->args[2])->s_mask;
return false;
}
fold_xi_to_not(ctx, op, 0)) {
return true;
}
+
+ ctx->s_mask = arg_info(op->args[1])->s_mask
+ & arg_info(op->args[2])->s_mask;
return false;
}
return true;
}
+ ctx->s_mask = arg_info(op->args[1])->s_mask;
+
/* Because of fold_to_not, we want to always return true, via finish. */
finish_folding(ctx, op);
return true;
ctx->z_mask = arg_info(op->args[1])->z_mask
| arg_info(op->args[2])->z_mask;
+ ctx->s_mask = arg_info(op->args[1])->s_mask
+ & arg_info(op->args[2])->s_mask;
return fold_masks(ctx, op);
}
fold_ix_to_not(ctx, op, 0)) {
return true;
}
+
+ ctx->s_mask = arg_info(op->args[1])->s_mask
+ & arg_info(op->args[2])->s_mask;
return false;
}
ctx->z_mask = arg_info(op->args[1])->z_mask
| arg_info(op->args[2])->z_mask;
+ ctx->s_mask = arg_info(op->args[1])->s_mask
+ & arg_info(op->args[2])->s_mask;
return fold_masks(ctx, op);
}