#define OVERFLOW_STACK_SIZE SZ_4K
+#define NVHE_STACK_SHIFT PAGE_SHIFT
+#define NVHE_STACK_SIZE (UL(1) << NVHE_STACK_SHIFT)
+
/*
* With the minimum frame size of [x29, x30], exactly half the combined
* sizes of the hyp and overflow stacks is the maximum size needed to
* save the unwinded stacktrace; plus an additional entry to delimit the
* end.
*/
-#define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + PAGE_SIZE) / 2 + sizeof(long))
+#define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + NVHE_STACK_SIZE) / 2 + sizeof(long))
/*
* Alignment of kernel segments (e.g. .text, .data).
DECLARE_KVM_NVHE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack);
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_stacktrace_info, kvm_stacktrace_info);
-DECLARE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
+DECLARE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
void kvm_nvhe_dump_backtrace(unsigned long hyp_offset);
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
-DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
+DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
free_hyp_pgds();
for_each_possible_cpu(cpu) {
- free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
+ free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
if (free_sve) {
* Allocate stack pages for Hypervisor-mode
*/
for_each_possible_cpu(cpu) {
- unsigned long stack_page;
+ unsigned long stack_base;
- stack_page = __get_free_page(GFP_KERNEL);
- if (!stack_page) {
+ stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
+ if (!stack_base) {
err = -ENOMEM;
goto out_err;
}
- per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
+ per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
}
/*
*/
for_each_possible_cpu(cpu) {
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
- char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
+ char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
- err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va);
+ err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va);
if (err) {
kvm_err("Cannot map hyp stack\n");
goto out_err;
* __hyp_pa() won't do the right thing there, since the stack
* has been mapped in the flexible private VA space.
*/
- params->stack_pa = __pa(stack_page);
+ params->stack_pa = __pa(stack_base);
}
for_each_possible_cpu(cpu) {
/*
* Test whether the SP has overflowed, without corrupting a GPR.
- * nVHE hypervisor stacks are aligned so that the PAGE_SHIFT bit
+ * nVHE hypervisor stacks are aligned so that the NVHE_STACK_SHIFT bit
* of SP should always be 1.
*/
add sp, sp, x0 // sp' = sp + x0
sub x0, sp, x0 // x0' = sp' - x0 = (sp + x0) - x0 = sp
- tbz x0, #PAGE_SHIFT, .L__hyp_sp_overflow\@
+ tbz x0, #NVHE_STACK_SHIFT, .L__hyp_sp_overflow\@
sub x0, sp, x0 // x0'' = sp' - x0' = (sp + x0) - sp = x0
sub sp, sp, x0 // sp'' = sp' - x0 = (sp + x0) - x0 = sp
prev_base = __io_map_base;
/*
- * Efficient stack verification using the PAGE_SHIFT bit implies
+ * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
* an alignment of our allocation on the order of the size.
*/
- size = PAGE_SIZE * 2;
+ size = NVHE_STACK_SIZE * 2;
addr = ALIGN(__io_map_base, size);
ret = __pkvm_alloc_private_va_range(addr, size);
* at the higher address and leave the lower guard page
* unbacked.
*
- * Any valid stack address now has the PAGE_SHIFT bit as 1
+ * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
* and addresses corresponding to the guard page have the
- * PAGE_SHIFT bit as 0 - this is used for overflow detection.
+ * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
*/
- ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE,
- PAGE_SIZE, phys, PAGE_HYP);
+ ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + NVHE_STACK_SIZE,
+ NVHE_STACK_SIZE, phys, PAGE_HYP);
if (ret)
__io_map_base = prev_base;
}
struct kvm_nvhe_stacktrace_info *stacktrace_info = this_cpu_ptr(&kvm_stacktrace_info);
struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
- stacktrace_info->stack_base = (unsigned long)(params->stack_hyp_va - PAGE_SIZE);
+ stacktrace_info->stack_base = (unsigned long)(params->stack_hyp_va - NVHE_STACK_SIZE);
stacktrace_info->overflow_stack_base = (unsigned long)this_cpu_ptr(overflow_stack);
stacktrace_info->fp = fp;
stacktrace_info->pc = pc;
{
struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
unsigned long high = params->stack_hyp_va;
- unsigned long low = high - PAGE_SIZE;
+ unsigned long low = high - NVHE_STACK_SIZE;
return (struct stack_info) {
.low = low,
mutex_lock(&kvm_hyp_pgd_mutex);
/*
- * Efficient stack verification using the PAGE_SHIFT bit implies
+ * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
* an alignment of our allocation on the order of the size.
*/
- size = PAGE_SIZE * 2;
+ size = NVHE_STACK_SIZE * 2;
base = ALIGN_DOWN(io_map_base - size, size);
ret = __hyp_alloc_private_va_range(base);
* at the higher address and leave the lower guard page
* unbacked.
*
- * Any valid stack address now has the PAGE_SHIFT bit as 1
+ * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
* and addresses corresponding to the guard page have the
- * PAGE_SHIFT bit as 0 - this is used for overflow detection.
+ * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
*/
- ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
- PAGE_HYP);
+ ret = __create_hyp_mappings(base + NVHE_STACK_SIZE, NVHE_STACK_SIZE,
+ phys_addr, PAGE_HYP);
if (ret)
kvm_err("Cannot map hyp stack\n");
struct kvm_nvhe_stacktrace_info *stacktrace_info
= this_cpu_ptr_nvhe_sym(kvm_stacktrace_info);
unsigned long low = (unsigned long)stacktrace_info->stack_base;
- unsigned long high = low + PAGE_SIZE;
+ unsigned long high = low + NVHE_STACK_SIZE;
return (struct stack_info) {
.low = low,
static struct stack_info stackinfo_get_hyp_kern_va(void)
{
- unsigned long low = (unsigned long)*this_cpu_ptr(&kvm_arm_hyp_stack_page);
- unsigned long high = low + PAGE_SIZE;
+ unsigned long low = (unsigned long)*this_cpu_ptr(&kvm_arm_hyp_stack_base);
+ unsigned long high = low + NVHE_STACK_SIZE;
return (struct stack_info) {
.low = low,