/*
* lock ordering:
* page_lock
- * pool->migrate_lock
+ * pool->lock
* class->lock
* zspage->lock
*/
#ifdef CONFIG_COMPACTION
struct work_struct free_work;
#endif
- /* protect page/zspage migration */
- rwlock_t migrate_lock;
+ /* protect zspage migration/compaction */
+ rwlock_t lock;
atomic_t compaction_in_progress;
};
BUG_ON(in_interrupt());
/* It guarantees it can get zspage from handle safely */
- read_lock(&pool->migrate_lock);
+ read_lock(&pool->lock);
obj = handle_to_obj(handle);
obj_to_location(obj, &zpdesc, &obj_idx);
zspage = get_zspage(zpdesc);
* which is smaller granularity.
*/
migrate_read_lock(zspage);
- read_unlock(&pool->migrate_lock);
+ read_unlock(&pool->lock);
class = zspage_class(pool, zspage);
off = offset_in_page(class->size * obj_idx);
return;
/*
- * The pool->migrate_lock protects the race with zpage's migration
+ * The pool->lock protects the race with zpage's migration
* so it's safe to get the page from handle.
*/
- read_lock(&pool->migrate_lock);
+ read_lock(&pool->lock);
obj = handle_to_obj(handle);
obj_to_zpdesc(obj, &f_zpdesc);
zspage = get_zspage(f_zpdesc);
class = zspage_class(pool, zspage);
spin_lock(&class->lock);
- read_unlock(&pool->migrate_lock);
+ read_unlock(&pool->lock);
class_stat_sub(class, ZS_OBJS_INUSE, 1);
obj_free(class->size, obj);
* The pool migrate_lock protects the race between zpage migration
* and zs_free.
*/
- write_lock(&pool->migrate_lock);
+ write_lock(&pool->lock);
class = zspage_class(pool, zspage);
/*
* Since we complete the data copy and set up new zspage structure,
* it's okay to release migration_lock.
*/
- write_unlock(&pool->migrate_lock);
+ write_unlock(&pool->lock);
spin_unlock(&class->lock);
migrate_write_unlock(zspage);
* protect the race between zpage migration and zs_free
* as well as zpage allocation/free
*/
- write_lock(&pool->migrate_lock);
+ write_lock(&pool->lock);
spin_lock(&class->lock);
while (zs_can_compact(class)) {
int fg;
src_zspage = NULL;
if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
- || rwlock_is_contended(&pool->migrate_lock)) {
+ || rwlock_is_contended(&pool->lock)) {
putback_zspage(class, dst_zspage);
dst_zspage = NULL;
spin_unlock(&class->lock);
- write_unlock(&pool->migrate_lock);
+ write_unlock(&pool->lock);
cond_resched();
- write_lock(&pool->migrate_lock);
+ write_lock(&pool->lock);
spin_lock(&class->lock);
}
}
putback_zspage(class, dst_zspage);
spin_unlock(&class->lock);
- write_unlock(&pool->migrate_lock);
+ write_unlock(&pool->lock);
return pages_freed;
}
unsigned long pages_freed = 0;
/*
- * Pool compaction is performed under pool->migrate_lock so it is basically
+ * Pool compaction is performed under pool->lock so it is basically
* single-threaded. Having more than one thread in __zs_compact()
- * will increase pool->migrate_lock contention, which will impact other
- * zsmalloc operations that need pool->migrate_lock.
+ * will increase pool->lock contention, which will impact other
+ * zsmalloc operations that need pool->lock.
*/
if (atomic_xchg(&pool->compaction_in_progress, 1))
return 0;
return NULL;
init_deferred_free(pool);
- rwlock_init(&pool->migrate_lock);
+ rwlock_init(&pool->lock);
atomic_set(&pool->compaction_in_progress, 0);
pool->name = kstrdup(name, GFP_KERNEL);