#include <linux/percpu.h>
 #include <linux/node.h>
 #include <linux/nodemask.h>
+#include <linux/of.h>
 #include <linux/sched.h>
+#include <linux/slab.h>
 
 #include <asm/cputype.h>
 #include <asm/topology.h>
        per_cpu(cpu_scale, cpu) = power;
 }
 
+#ifdef CONFIG_OF
+struct cpu_efficiency {
+       const char *compatible;
+       unsigned long efficiency;
+};
+
+/*
+ * Table of relative efficiency of each processors
+ * The efficiency value must fit in 20bit and the final
+ * cpu_scale value must be in the range
+ *   0 < cpu_scale < 3*SCHED_POWER_SCALE/2
+ * in order to return at most 1 when DIV_ROUND_CLOSEST
+ * is used to compute the capacity of a CPU.
+ * Processors that are not defined in the table,
+ * use the default SCHED_POWER_SCALE value for cpu_scale.
+ */
+struct cpu_efficiency table_efficiency[] = {
+       {"arm,cortex-a15", 3891},
+       {"arm,cortex-a7",  2048},
+       {NULL, },
+};
+
+struct cpu_capacity {
+       unsigned long hwid;
+       unsigned long capacity;
+};
+
+struct cpu_capacity *cpu_capacity;
+
+unsigned long middle_capacity = 1;
+
+/*
+ * Iterate all CPUs' descriptor in DT and compute the efficiency
+ * (as per table_efficiency). Also calculate a middle efficiency
+ * as close as possible to  (max{eff_i} - min{eff_i}) / 2
+ * This is later used to scale the cpu_power field such that an
+ * 'average' CPU is of middle power. Also see the comments near
+ * table_efficiency[] and update_cpu_power().
+ */
+static void __init parse_dt_topology(void)
+{
+       struct cpu_efficiency *cpu_eff;
+       struct device_node *cn = NULL;
+       unsigned long min_capacity = (unsigned long)(-1);
+       unsigned long max_capacity = 0;
+       unsigned long capacity = 0;
+       int alloc_size, cpu = 0;
+
+       alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity);
+       cpu_capacity = (struct cpu_capacity *)kzalloc(alloc_size, GFP_NOWAIT);
+
+       while ((cn = of_find_node_by_type(cn, "cpu"))) {
+               const u32 *rate, *reg;
+               int len;
+
+               if (cpu >= num_possible_cpus())
+                       break;
+
+               for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
+                       if (of_device_is_compatible(cn, cpu_eff->compatible))
+                               break;
+
+               if (cpu_eff->compatible == NULL)
+                       continue;
+
+               rate = of_get_property(cn, "clock-frequency", &len);
+               if (!rate || len != 4) {
+                       pr_err("%s missing clock-frequency property\n",
+                               cn->full_name);
+                       continue;
+               }
+
+               reg = of_get_property(cn, "reg", &len);
+               if (!reg || len != 4) {
+                       pr_err("%s missing reg property\n", cn->full_name);
+                       continue;
+               }
+
+               capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
+
+               /* Save min capacity of the system */
+               if (capacity < min_capacity)
+                       min_capacity = capacity;
+
+               /* Save max capacity of the system */
+               if (capacity > max_capacity)
+                       max_capacity = capacity;
+
+               cpu_capacity[cpu].capacity = capacity;
+               cpu_capacity[cpu++].hwid = be32_to_cpup(reg);
+       }
+
+       if (cpu < num_possible_cpus())
+               cpu_capacity[cpu].hwid = (unsigned long)(-1);
+
+       /* If min and max capacities are equals, we bypass the update of the
+        * cpu_scale because all CPUs have the same capacity. Otherwise, we
+        * compute a middle_capacity factor that will ensure that the capacity
+        * of an 'average' CPU of the system will be as close as possible to
+        * SCHED_POWER_SCALE, which is the default value, but with the
+        * constraint explained near table_efficiency[].
+        */
+       if (min_capacity == max_capacity)
+               cpu_capacity[0].hwid = (unsigned long)(-1);
+       else if (4*max_capacity < (3*(max_capacity + min_capacity)))
+               middle_capacity = (min_capacity + max_capacity)
+                               >> (SCHED_POWER_SHIFT+1);
+       else
+               middle_capacity = ((max_capacity / 3)
+                               >> (SCHED_POWER_SHIFT-1)) + 1;
+
+}
+
+/*
+ * Look for a customed capacity of a CPU in the cpu_capacity table during the
+ * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
+ * function returns directly for SMP system.
+ */
+void update_cpu_power(unsigned int cpu, unsigned long hwid)
+{
+       unsigned int idx = 0;
+
+       /* look for the cpu's hwid in the cpu capacity table */
+       for (idx = 0; idx < num_possible_cpus(); idx++) {
+               if (cpu_capacity[idx].hwid == hwid)
+                       break;
+
+               if (cpu_capacity[idx].hwid == -1)
+                       return;
+       }
+
+       if (idx == num_possible_cpus())
+               return;
+
+       set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity);
+
+       printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
+               cpu, arch_scale_freq_power(NULL, cpu));
+}
+
+#else
+static inline void parse_dt_topology(void) {}
+static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
+#endif
+
+
 /*
  * cpu topology management
  */
  * These masks reflect the current use of the affinity levels.
  * The affinity level can be up to 16 bits according to ARM ARM
  */
+#define MPIDR_HWID_BITMASK 0xFFFFFF
 
 #define MPIDR_LEVEL0_MASK 0x3
 #define MPIDR_LEVEL0_SHIFT 0
 
        update_siblings_masks(cpuid);
 
+       update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK);
+
        printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
                cpuid, cpu_topology[cpuid].thread_id,
                cpu_topology[cpuid].core_id,
                set_power_scale(cpu, SCHED_POWER_SCALE);
        }
        smp_wmb();
+
+       parse_dt_topology();
 }