return false;
}
+static bool spl_is_rgb8(enum spl_pixel_format format)
+{
+ if (format == SPL_PIXEL_FORMAT_ARGB8888)
+ return true;
+
+ return false;
+}
+
/*Calculate inits and viewport */
static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
struct spl_scratch *spl_scratch)
bool skip_easf = false;
bool lls_enable_easf = true;
- /*
- * If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
- * function to determine whether to use LINEAR or NONLINEAR scaling
- */
- if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
- lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
- spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
- &spl_in->lls_pref);
+ if (spl_in->disable_easf)
+ skip_easf = true;
vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
- if (!lls_enable_easf || spl_in->disable_easf)
- skip_easf = true;
-
/*
* No EASF support for downscaling > 2:1
* EASF support for upscaling or downscaling up to 2:1
if ((vratio > 2) || (hratio > 2))
skip_easf = true;
+ /*
+ * If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
+ * function to determine whether to use LINEAR or NONLINEAR scaling
+ */
+ if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
+ lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
+ spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
+ &spl_in->lls_pref);
+
+ if (!lls_enable_easf)
+ skip_easf = true;
+
/* Check for linear scaling or EASF preferred */
if (spl_in->lls_pref != LLS_PREF_YES && !spl_in->prefer_easf)
skip_easf = true;
struct spl_taps taps = spl_scratch->scl_data.taps;
bool fullscreen = spl_is_video_fullscreen(spl_in);
- vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
- hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
-
/* Return if adaptive sharpness is disabled */
if (spl_in->adaptive_sharpness.enable == false)
return enable_isharp;
+ vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
+ hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
+
/* No iSHARP support for downscaling */
if (vratio > 1 || hratio > 1)
return enable_isharp;
spl_set_filters_data(dscl_prog_data, data, enable_easf_v, enable_easf_h);
}
+/* Calculate C0-C3 coefficients based on HDR_mult */
+static void spl_calculate_c0_c3_hdr(struct dscl_prog_data *dscl_prog_data, uint32_t hdr_multx100)
+{
+ struct spl_fixed31_32 hdr_mult, c0_mult, c1_mult, c2_mult;
+ struct spl_fixed31_32 c0_calc, c1_calc, c2_calc;
+ struct spl_custom_float_format fmt;
+
+ SPL_ASSERT(hdr_multx100);
+ hdr_mult = spl_fixpt_from_fraction((long long)hdr_multx100, 100LL);
+ c0_mult = spl_fixpt_from_fraction(2126LL, 10000LL);
+ c1_mult = spl_fixpt_from_fraction(7152LL, 10000LL);
+ c2_mult = spl_fixpt_from_fraction(722LL, 10000LL);
+
+ c0_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c0_mult, spl_fixpt_from_fraction(
+ 16384LL, 125LL)));
+ c1_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c1_mult, spl_fixpt_from_fraction(
+ 16384LL, 125LL)));
+ c2_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c2_mult, spl_fixpt_from_fraction(
+ 16384LL, 125LL)));
+
+ fmt.exponenta_bits = 5;
+ fmt.mantissa_bits = 10;
+ fmt.sign = true;
+
+ // fp1.5.10, C0 coefficient (LN_rec709: HDR_MULT * 0.212600 * 2^14/125)
+ spl_convert_to_custom_float_format(c0_calc, &fmt, &dscl_prog_data->easf_matrix_c0);
+ // fp1.5.10, C1 coefficient (LN_rec709: HDR_MULT * 0.715200 * 2^14/125)
+ spl_convert_to_custom_float_format(c1_calc, &fmt, &dscl_prog_data->easf_matrix_c1);
+ // fp1.5.10, C2 coefficient (LN_rec709: HDR_MULT * 0.072200 * 2^14/125)
+ spl_convert_to_custom_float_format(c2_calc, &fmt, &dscl_prog_data->easf_matrix_c2);
+ dscl_prog_data->easf_matrix_c3 = 0x0; // fp1.5.10, C3 coefficient
+}
+
/* Set EASF data */
static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *spl_out, bool enable_easf_v,
bool enable_easf_h, enum linear_light_scaling lls_pref,
- enum spl_pixel_format format, enum system_setup setup)
+ enum spl_pixel_format format, enum system_setup setup,
+ uint32_t hdr_multx100)
{
struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
if (enable_easf_v) {
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->easf_ltonl_en = 1; // Linear input
- if (setup == HDR_L) {
- dscl_prog_data->easf_matrix_c0 =
- 0x504E; // fp1.5.10, C0 coefficient (LN_BT2020: 0.2627 * (2^14)/125 = 34.43750000)
- dscl_prog_data->easf_matrix_c1 =
- 0x558E; // fp1.5.10, C1 coefficient (LN_BT2020: 0.6780 * (2^14)/125 = 88.87500000)
- dscl_prog_data->easf_matrix_c2 =
- 0x47C6; // fp1.5.10, C2 coefficient (LN_BT2020: 0.0593 * (2^14)/125 = 7.77343750)
- dscl_prog_data->easf_matrix_c3 =
- 0x0; // fp1.5.10, C3 coefficient
- } else { // SDR_L
+ if ((setup == HDR_L) && (spl_is_rgb8(format))) {
+ /* Calculate C0-C3 coefficients based on HDR multiplier */
+ spl_calculate_c0_c3_hdr(dscl_prog_data, hdr_multx100);
+ } else { // HDR_L ( DWM ) and SDR_L
dscl_prog_data->easf_matrix_c0 =
0x4EF7; // fp1.5.10, C0 coefficient (LN_rec709: 0.2126 * (2^14)/125 = 27.86590720)
dscl_prog_data->easf_matrix_c1 =
dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
- dscl_prog_data->isharp_lba.in_seg[2] = 312; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
+ dscl_prog_data->isharp_lba.in_seg[2] = 450; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39
+ dscl_prog_data->isharp_lba.slope_seg[2] = 0x18D; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -115
// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
dscl_prog_data->isharp_lba.in_seg[3] = 520; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
dscl_prog_data->isharp_lba.in_seg[5] = 520; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
- } else {
+ } else if (setup == HDR_L) {
// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[0] = 32; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
- dscl_prog_data->isharp_lba.in_seg[1] = 256; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
+ dscl_prog_data->isharp_lba.in_seg[1] = 254; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
+ dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
+ dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
+ // ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
+ dscl_prog_data->isharp_lba.in_seg[2] = 559; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
+ dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
+ dscl_prog_data->isharp_lba.slope_seg[2] = 0x10C; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -244
+ // ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
+ dscl_prog_data->isharp_lba.in_seg[3] = 592; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
+ dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
+ dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
+ // ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
+ dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
+ dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
+ dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
+ // ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
+ dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
+ dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
+ } else {
+ // ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
+ dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
+ dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
+ dscl_prog_data->isharp_lba.slope_seg[0] = 40; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format
+ // ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
+ dscl_prog_data->isharp_lba.in_seg[1] = 204; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
- dscl_prog_data->isharp_lba.in_seg[2] = 614; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
+ dscl_prog_data->isharp_lba.in_seg[2] = 818; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
- dscl_prog_data->isharp_lba.slope_seg[2] = 0x1EC; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -20
+ dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39
// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
// Set EASF
spl_set_easf_data(&spl_scratch, spl_out, enable_easf_v, enable_easf_h, spl_in->lls_pref,
- spl_in->basic_in.format, setup);
+ spl_in->basic_in.format, setup, spl_in->hdr_multx100);
// Set iSHARP
vratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.vert);
--- /dev/null
+// SPDX-License-Identifier: MIT
+//
+// Copyright 2024 Advanced Micro Devices, Inc.
+
+#include "spl_debug.h"
+#include "spl_custom_float.h"
+
+static bool spl_build_custom_float(struct spl_fixed31_32 value,
+ const struct spl_custom_float_format *format,
+ bool *negative,
+ uint32_t *mantissa,
+ uint32_t *exponenta)
+{
+ uint32_t exp_offset = (1 << (format->exponenta_bits - 1)) - 1;
+
+ const struct spl_fixed31_32 mantissa_constant_plus_max_fraction =
+ spl_fixpt_from_fraction((1LL << (format->mantissa_bits + 1)) - 1,
+ 1LL << format->mantissa_bits);
+
+ struct spl_fixed31_32 mantiss;
+
+ if (spl_fixpt_eq(value, spl_fixpt_zero)) {
+ *negative = false;
+ *mantissa = 0;
+ *exponenta = 0;
+ return true;
+ }
+
+ if (spl_fixpt_lt(value, spl_fixpt_zero)) {
+ *negative = format->sign;
+ value = spl_fixpt_neg(value);
+ } else {
+ *negative = false;
+ }
+
+ if (spl_fixpt_lt(value, spl_fixpt_one)) {
+ uint32_t i = 1;
+
+ do {
+ value = spl_fixpt_shl(value, 1);
+ ++i;
+ } while (spl_fixpt_lt(value, spl_fixpt_one));
+
+ --i;
+
+ if (exp_offset <= i) {
+ *mantissa = 0;
+ *exponenta = 0;
+ return true;
+ }
+
+ *exponenta = exp_offset - i;
+ } else if (spl_fixpt_le(mantissa_constant_plus_max_fraction, value)) {
+ uint32_t i = 1;
+
+ do {
+ value = spl_fixpt_shr(value, 1);
+ ++i;
+ } while (spl_fixpt_lt(mantissa_constant_plus_max_fraction, value));
+
+ *exponenta = exp_offset + i - 1;
+ } else {
+ *exponenta = exp_offset;
+ }
+
+ mantiss = spl_fixpt_sub(value, spl_fixpt_one);
+
+ if (spl_fixpt_lt(mantiss, spl_fixpt_zero) ||
+ spl_fixpt_lt(spl_fixpt_one, mantiss))
+ mantiss = spl_fixpt_zero;
+ else
+ mantiss = spl_fixpt_shl(mantiss, format->mantissa_bits);
+
+ *mantissa = spl_fixpt_floor(mantiss);
+
+ return true;
+}
+
+static bool spl_setup_custom_float(const struct spl_custom_float_format *format,
+ bool negative,
+ uint32_t mantissa,
+ uint32_t exponenta,
+ uint32_t *result)
+{
+ uint32_t i = 0;
+ uint32_t j = 0;
+ uint32_t value = 0;
+
+ /* verification code:
+ * once calculation is ok we can remove it
+ */
+
+ const uint32_t mantissa_mask =
+ (1 << (format->mantissa_bits + 1)) - 1;
+
+ const uint32_t exponenta_mask =
+ (1 << (format->exponenta_bits + 1)) - 1;
+
+ if (mantissa & ~mantissa_mask) {
+ SPL_BREAK_TO_DEBUGGER();
+ mantissa = mantissa_mask;
+ }
+
+ if (exponenta & ~exponenta_mask) {
+ SPL_BREAK_TO_DEBUGGER();
+ exponenta = exponenta_mask;
+ }
+
+ /* end of verification code */
+
+ while (i < format->mantissa_bits) {
+ uint32_t mask = 1 << i;
+
+ if (mantissa & mask)
+ value |= mask;
+
+ ++i;
+ }
+
+ while (j < format->exponenta_bits) {
+ uint32_t mask = 1 << j;
+
+ if (exponenta & mask)
+ value |= mask << i;
+
+ ++j;
+ }
+
+ if (negative && format->sign)
+ value |= 1 << (i + j);
+
+ *result = value;
+
+ return true;
+}
+
+bool spl_convert_to_custom_float_format(struct spl_fixed31_32 value,
+ const struct spl_custom_float_format *format,
+ uint32_t *result)
+{
+ uint32_t mantissa;
+ uint32_t exponenta;
+ bool negative;
+
+ return spl_build_custom_float(value, format, &negative, &mantissa, &exponenta) &&
+ spl_setup_custom_float(format,
+ negative,
+ mantissa,
+ exponenta,
+ result);
+}