data: impl PinInit<Data, Error>,
) -> impl PinInit<Self, Error> {
try_pin_init!(Self {
- subsystem <- pin_init::zeroed().chain(
+ subsystem <- pin_init::init_zeroed().chain(
|place: &mut Opaque<bindings::configfs_subsystem>| {
// SAFETY: We initialized the required fields of `place.group` above.
unsafe {
data: impl PinInit<Data, Error>,
) -> impl PinInit<Self, Error> {
try_pin_init!(Self {
- group <- pin_init::zeroed().chain(|v: &mut Opaque<bindings::config_group>| {
+ group <- pin_init::init_zeroed().chain(|v: &mut Opaque<bindings::config_group>| {
let place = v.get();
let name = name.as_bytes_with_nul().as_ptr();
// SAFETY: It is safe to initialize a group once it has been zeroed.
///
/// ```rust
/// use kernel::error::Error;
-/// use pin_init::zeroed;
+/// use pin_init::init_zeroed;
/// struct BigBuf {
/// big: KBox<[u8; 1024 * 1024 * 1024]>,
/// small: [u8; 1024 * 1024],
/// impl BigBuf {
/// fn new() -> impl Init<Self, Error> {
/// try_init!(Self {
-/// big: KBox::init(zeroed(), GFP_KERNEL)?,
+/// big: KBox::init(init_zeroed(), GFP_KERNEL)?,
/// small: [0; 1024 * 1024],
/// }? Error)
/// }
/// ```rust
/// # #![feature(new_uninit)]
/// use kernel::error::Error;
-/// use pin_init::zeroed;
+/// use pin_init::init_zeroed;
/// #[pin_data]
/// struct BigBuf {
/// big: KBox<[u8; 1024 * 1024 * 1024]>,
/// impl BigBuf {
/// fn new() -> impl PinInit<Self, Error> {
/// try_pin_init!(Self {
-/// big: KBox::init(zeroed(), GFP_KERNEL)?,
+/// big: KBox::init(init_zeroed(), GFP_KERNEL)?,
/// small: [0; 1024 * 1024],
/// ptr: core::ptr::null_mut(),
/// }? Error)
fn new() -> impl PinInit<Self, Error> {
try_pin_init!(Self {
status <- CMutex::new(0),
- buffer: Box::init(pin_init::zeroed())?,
+ buffer: Box::init(pin_init::init_zeroed())?,
}? Error)
}
}
impl ManagedBuf {
pub fn new() -> impl Init<Self> {
- init!(ManagedBuf { buf <- zeroed() })
+ init!(ManagedBuf { buf <- init_zeroed() })
}
}
{
// we want to initialize the struct in-place, otherwise we would get a stackoverflow
let buf: Box<BigStruct> = Box::init(init!(BigStruct {
- buf <- zeroed(),
+ buf <- init_zeroed(),
a: 7,
b: 186,
c: 7789,
//! fn new() -> impl PinInit<Self, Error> {
//! try_pin_init!(Self {
//! status <- CMutex::new(0),
-//! buffer: Box::init(pin_init::zeroed())?,
+//! buffer: Box::init(pin_init::init_zeroed())?,
//! }? Error)
//! }
//! }
/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
/// pointer named `this` inside of the initializer.
-/// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
+/// - Using struct update syntax one can place `..Zeroable::init_zeroed()` at the very end of the
/// struct, this initializes every field with 0 and then runs all initializers specified in the
/// body. This can only be done if [`Zeroable`] is implemented for the struct.
///
/// });
/// let init = pin_init!(Buf {
/// buf: [1; 64],
-/// ..Zeroable::zeroed()
+/// ..Zeroable::init_zeroed()
/// });
/// ```
///
/// ```rust
/// # #![feature(allocator_api)]
/// # #[path = "../examples/error.rs"] mod error; use error::Error;
-/// use pin_init::{pin_data, try_pin_init, PinInit, InPlaceInit, zeroed};
+/// use pin_init::{pin_data, try_pin_init, PinInit, InPlaceInit, init_zeroed};
///
/// #[pin_data]
/// struct BigBuf {
/// impl BigBuf {
/// fn new() -> impl PinInit<Self, Error> {
/// try_pin_init!(Self {
-/// big: Box::init(zeroed())?,
+/// big: Box::init(init_zeroed())?,
/// small: [0; 1024 * 1024],
/// ptr: core::ptr::null_mut(),
/// }? Error)
/// # #[path = "../examples/error.rs"] mod error; use error::Error;
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
/// # use pin_init::InPlaceInit;
-/// use pin_init::{init, Init, zeroed};
+/// use pin_init::{init, Init, init_zeroed};
///
/// struct BigBuf {
/// small: [u8; 1024 * 1024],
/// impl BigBuf {
/// fn new() -> impl Init<Self> {
/// init!(Self {
-/// small <- zeroed(),
+/// small <- init_zeroed(),
/// })
/// }
/// }
/// # #![feature(allocator_api)]
/// # use core::alloc::AllocError;
/// # use pin_init::InPlaceInit;
-/// use pin_init::{try_init, Init, zeroed};
+/// use pin_init::{try_init, Init, init_zeroed};
///
/// struct BigBuf {
/// big: Box<[u8; 1024 * 1024 * 1024]>,
/// impl BigBuf {
/// fn new() -> impl Init<Self, AllocError> {
/// try_init!(Self {
-/// big: Box::init(zeroed())?,
+/// big: Box::init(init_zeroed())?,
/// small: [0; 1024 * 1024],
/// }? AllocError)
/// }
///
/// ```rust
/// # #![expect(clippy::disallowed_names)]
- /// use pin_init::{init, zeroed, Init};
+ /// use pin_init::{init, init_zeroed, Init};
///
/// struct Foo {
/// buf: [u8; 1_000_000],
/// }
///
/// let foo = init!(Foo {
- /// buf <- zeroed()
+ /// buf <- init_zeroed()
/// }).chain(|foo| {
/// foo.setup();
/// Ok(())
// SAFETY: by the safety requirement of `ZeroableOption`, this is valid.
unsafe impl<T: ZeroableOption> Zeroable for Option<T> {}
-/// Create a new zeroed T.
+/// Create an initializer for a zeroed `T`.
///
/// The returned initializer will write `0x00` to every byte of the given `slot`.
#[inline]
-pub fn zeroed<T: Zeroable>() -> impl Init<T> {
+pub fn init_zeroed<T: Zeroable>() -> impl Init<T> {
// SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
// and because we write all zeroes, the memory is initialized.
unsafe {
///
/// This macro has multiple internal call configurations, these are always the very first ident:
/// - nothing: this is the base case and called by the `{try_}{pin_}init!` macros.
-/// - `with_update_parsed`: when the `..Zeroable::zeroed()` syntax has been handled.
+/// - `with_update_parsed`: when the `..Zeroable::init_zeroed()` syntax has been handled.
/// - `init_slot`: recursively creates the code that initializes all fields in `slot`.
/// - `make_initializer`: recursively create the struct initializer that guarantees that every
/// field has been initialized exactly once.
@data($data, $($use_data)?),
@has_data($has_data, $get_data),
@construct_closure($construct_closure),
- @zeroed(), // Nothing means default behavior.
+ @init_zeroed(), // Nothing means default behavior.
)
};
(
@has_data($has_data:ident, $get_data:ident),
// `pin_init_from_closure` or `init_from_closure`.
@construct_closure($construct_closure:ident),
- @munch_fields(..Zeroable::zeroed()),
+ @munch_fields(..Zeroable::init_zeroed()),
) => {
$crate::__init_internal!(with_update_parsed:
@this($($this)?),
@data($data, $($use_data)?),
@has_data($has_data, $get_data),
@construct_closure($construct_closure),
- @zeroed(()), // `()` means zero all fields not mentioned.
+ @init_zeroed(()), // `()` means zero all fields not mentioned.
)
};
(
@has_data($has_data:ident, $get_data:ident),
// `pin_init_from_closure` or `init_from_closure`.
@construct_closure($construct_closure:ident),
- @zeroed($($init_zeroed:expr)?),
+ @init_zeroed($($init_zeroed:expr)?),
) => {{
// We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
// type and shadow it later when we insert the arbitrary user code. That way there will be
@data($data:ident),
@slot($slot:ident),
@guards($($guards:ident,)*),
- @munch_fields($(..Zeroable::zeroed())? $(,)?),
+ @munch_fields($(..Zeroable::init_zeroed())? $(,)?),
) => {
// Endpoint of munching, no fields are left. If execution reaches this point, all fields
// have been initialized. Therefore we can now dismiss the guards by forgetting them.
(make_initializer:
@slot($slot:ident),
@type_name($t:path),
- @munch_fields(..Zeroable::zeroed() $(,)?),
+ @munch_fields(..Zeroable::init_zeroed() $(,)?),
@acc($($acc:tt)*),
) => {
// Endpoint, nothing more to munch, create the initializer. Since the users specified
- // `..Zeroable::zeroed()`, the slot will already have been zeroed and all field that have
+ // `..Zeroable::init_zeroed()`, the slot will already have been zeroed and all field that have
// not been overwritten are thus zero and initialized. We still check that all fields are
// actually accessible by using the struct update syntax ourselves.
// We are inside of a closure that is never executed and thus we can abuse `slot` to