BPF Instruction Set Architecture (ISA)
======================================
-eBPF (which is no longer an acronym for anything), also commonly
+eBPF, also commonly
referred to as BPF, is a technology with origins in the Linux kernel
that can run untrusted programs in a privileged context such as an
operating system kernel. This document specifies the BPF instruction
set architecture (ISA).
+As a historical note, BPF originally stood for Berkeley Packet Filter,
+but now that it can do so much more than packet filtering, the acronym
+no longer makes sense. BPF is now considered a standalone term that
+does not stand for anything. The original BPF is sometimes referred to
+as cBPF (classic BPF) to distinguish it from the now widely deployed
+eBPF (extended BPF).
+
Documentation conventions
=========================
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 `<https://www.rfc-editor.org/info/rfc2119>`_
-`RFC8174 <https://www.rfc-editor.org/info/rfc8174>`_
+`<https://www.rfc-editor.org/info/rfc8174>`_
when, and only when, they appear in all capitals, as shown here.
For brevity and consistency, this document refers to families
Functions
---------
-* htobe16: Takes an unsigned 16-bit number in host-endian format and
- returns the equivalent number as an unsigned 16-bit number in big-endian
- format.
-* htobe32: Takes an unsigned 32-bit number in host-endian format and
- returns the equivalent number as an unsigned 32-bit number in big-endian
- format.
-* htobe64: Takes an unsigned 64-bit number in host-endian format and
- returns the equivalent number as an unsigned 64-bit number in big-endian
- format.
-* htole16: Takes an unsigned 16-bit number in host-endian format and
- returns the equivalent number as an unsigned 16-bit number in little-endian
- format.
-* htole32: Takes an unsigned 32-bit number in host-endian format and
- returns the equivalent number as an unsigned 32-bit number in little-endian
- format.
-* htole64: Takes an unsigned 64-bit number in host-endian format and
- returns the equivalent number as an unsigned 64-bit number in little-endian
- format.
+
+The following byteswap functions are direction-agnostic. That is,
+the same function is used for conversion in either direction discussed
+below.
+
+* be16: Takes an unsigned 16-bit number and converts it between
+ host byte order and big-endian
+ (`IEN137 <https://www.rfc-editor.org/ien/ien137.txt>`_) byte order.
+* be32: Takes an unsigned 32-bit number and converts it between
+ host byte order and big-endian byte order.
+* be64: Takes an unsigned 64-bit number and converts it between
+ host byte order and big-endian byte order.
* bswap16: Takes an unsigned 16-bit number in either big- or little-endian
format and returns the equivalent number with the same bit width but
opposite endianness.
* bswap64: Takes an unsigned 64-bit number in either big- or little-endian
format and returns the equivalent number with the same bit width but
opposite endianness.
-
+* le16: Takes an unsigned 16-bit number and converts it between
+ host byte order and little-endian byte order.
+* le32: Takes an unsigned 32-bit number and converts it between
+ host byte order and little-endian byte order.
+* le64: Takes an unsigned 64-bit number and converts it between
+ host byte order and little-endian byte order.
Definitions
-----------
===== ======== ===== =================================================
class source value description
===== ======== ===== =================================================
- ALU TO_LE 0 convert between host byte order and little endian
- ALU TO_BE 1 convert between host byte order and big endian
+ ALU LE 0 convert between host byte order and little endian
+ ALU BE 1 convert between host byte order and big endian
ALU64 Reserved 0 do byte swap unconditionally
===== ======== ===== =================================================
Examples:
-``{END, TO_LE, ALU}`` with 'imm' = 16/32/64 means::
+``{END, LE, ALU}`` with 'imm' = 16/32/64 means::
- dst = htole16(dst)
- dst = htole32(dst)
- dst = htole64(dst)
+ dst = le16(dst)
+ dst = le32(dst)
+ dst = le64(dst)
-``{END, TO_BE, ALU}`` with 'imm' = 16/32/64 means::
+``{END, BE, ALU}`` with 'imm' = 16/32/64 means::
- dst = htobe16(dst)
- dst = htobe32(dst)
- dst = htobe64(dst)
+ dst = be16(dst)
+ dst = be32(dst)
+ dst = be64(dst)
-``{END, TO_LE, ALU64}`` with 'imm' = 16/32/64 means::
+``{END, TO, ALU64}`` with 'imm' = 16/32/64 means::
dst = bswap16(dst)
dst = bswap32(dst)
set of function calls exposed by the underlying platform.
Historically, each helper function was identified by a static ID
-encoded in the 'imm' field. The available helper functions may differ
-for each program type, but static IDs are unique across all program types.
+encoded in the 'imm' field. Further documentation of helper functions
+is outside the scope of this document and standardization is left for
+future work, but use is widely deployed and more information can be
+found in platform-specific documentation (e.g., Linux kernel documentation).
Platforms that support the BPF Type Format (BTF) support identifying
a helper function by a BTF ID encoded in the 'imm' field, where the BTF ID
identifies the helper name and type. Further documentation of BTF
-is outside the scope of this document and is left for future work.
+is outside the scope of this document and standardization is left for
+future work, but use is widely deployed and more information can be
+found in platform-specific documentation (e.g., Linux kernel documentation).
Program-local functions
~~~~~~~~~~~~~~~~~~~~~~~