Substitute the global locking scheme with a fine grained one, employing
the read-write semaphore and the scalable exception tables with
per-bucket locks introduced by the previous two commits.
Summarizing, we now use a read-write semaphore to protect the mostly
read fields of the snapshot structure, e.g., valid, active, etc., and
per-bucket bit spinlocks to protect accesses to the complete and pending
exception tables.
Finally, we use an extra spinlock (pe_allocation_lock) to serialize the
allocation of new exceptions by the exception store. This allocation is
really fast, so the extra spinlock doesn't hurt the performance.
This scheme allows dm-snapshot to scale better, resulting in increased
IOPS and reduced latency.
Following are some benchmark results using the null_blk device:
* Benchmark fio_snapshot_randwrite_throughput_N, from the device mapper
test suite [1] (direct IO, random 4K writes to snapshot device, IO
engine libaio):