MlzrEcrieyy Wilee o
Linitne Plurnigers Con‘feren#
20 &= -4

ORACLE
Ll Y

ffiliates. All rights res

"y

What is the XArray?

* Automatically resizing array of pointers
* Indexed by unsigned long

* All pointers initially NULL

* Contains spinlock

* Loads under RCU read lock

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Normal APl - Fundamentals

* Some users only need load, store and (maybe) iterate:
void *xa load(struct xarray *, unsigned long index);

void *xa store(struct xarray *, unsigned long index,
void *entry, gfp t);

void *xa erase(struct xarray *, unsigned long index);

xa for each(struct xarray *, void *entry,
unsigned long index, unsigned long max,
xa mark t filter) { }

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Normal API - Marks

* Three auxiliary bits per non-NULL entry

void xa set mark(struct xarray *,
unsigned long index, xa mark t);

void xa clear mark(struct xarray *,
unsigned long index, xa mark t);

bool xa get mark(struct xarray ¥,
unsigned long index, xa mark t);

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Normal API - Less used

* Some users need something a little more complex:

int xa insert(struct xarray *, unsigned long index,
void *entry, gfp t);

void *xa cmpxchg(struct xarray *, unsigned long index,
void *old, wvoid *entry, gfp t);

void *xa find(struct xarray *, unsigned long *index,
unsigned long max, xa mark t filter);

int xa reserve(struct xarray *, unsigned long index,

gfp t);

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Advanced API

* If you need something a little unusual, the previous functions are all built
on smaller building-block functions. Here’s xa_cmpxchg():

XA STATE (xas, xa, index);
void *curr;
do {
xas lock (&xas) ;
curr = xas load(&xas);
i1f (curr == old)
xas store(&xas, entry);
xas_unlock (&xas) ;
} while (xas_nomem(&xas, gfp));
return xas result(&xas, curr);

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Normal API - Allocation

* The XArray can track free entries for you:

int xa alloc(struct xarray *, u32 *id,
u32 max, void *entry, gfp t);

int xa alloc cyclic(struct xarray *, u32 *id,
u32 min, u32 max, void *entry, gfp t);

* Storing NULL does not free the entry; now have to use xa erase ()

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

What should it be used for?

* All radix tree users replaced here:

http://git.infradead.org/users/willy/linux-dax.git/shortlog/refs/heads/xarra
y-conv

* Some of the IDR users also converted
* Replace custom implementations of resizing arrays
* Some linked lists can be replaced

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

http://git.infradead.org/users/willy/linux-dax.git/shortlog/refs/heads/xarray-conv
http://git.infradead.org/users/willy/linux-dax.git/shortlog/refs/heads/xarray-conv

What shouldn’t it be used for?

* Sparse arrays (yet)

* Hashtables (yet)

* Ranges (API exists, has one user, don’t add more yet)
* Replacing rbtrees (yet)

* The fd table

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Defend against Spectre!

if (get user(id, &ring-id))
return NULL;

rcu read lock();
- table = rcu dereference (mm->ioctx table) ;

= if ('table || id >= table->nr)

_ goto out;
- ctx = rcu dereference (table->table[id]) ;

+ ctx

ORACLE

xa;Ioad(&mm—>ioctx, id) ;

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 10

Convert linked lists to allocating XArrays

* |f you just need to keep a list of objects and iterate over them, you can
just delete the list_head from your data structure

* |f you need to be able to remove objects from the middle of the list, you
may need to store the ID in the object (16 bytes — 4 bytes)

* |f an object may be on one of several lists, you may also need to store the
XArray pointer in the object (16 bytes — 12 bytes)

— But maybe you can use marks to avoid having multiple lists

* |f order matters, use a cyclic allocator

— We might need a cyclic iterator too

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 11

Convert linked lists to allocating XArrays

* For lists with high turn-over (eg LRU), this is not ideal yet
* |f adriver is keeping track of its devices, this is perfect

* Antipattern: IDA to allocate device number, store devices in linked list

— Worse antipattern: Driver searches linked list to find device with matching ID

Must be able to allocate memory at list add/move time

* Do we need a new API for this usage?

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

12

Example linked list conversion

+unsigned long index;

-list for each entry(sdev, &starget->devices, same target siblings) ({
+xa for each(&starget >devices, sdev, index, UINT MAX, XA PRESENT) {
-struct scsi _device *sdev, *tmp;

+struct sc31_dev1ce *sdev;

+unsigned long index;

-list for each entry safe(sdev, tmp, &starget->devices,

- same target siblings) {

+xa for each(&starget->devices, sdev, index, UINT MAX, XA PRESENT) ({
-INIT LIST HEAD (&sdev->same target siblings);

-INIT LIST HEAD (&starget-devices);

+xa init flags(&starget->devices, XA FLAGS ALLOC) ;

-list del (&sdev->same target siblings);

+xa_ erase (&sdev->sdev_target->devices, sdev->pertarget id);

—llSt add tail (&sdev->same target siblings, &starget-devices);

+xa alloc(&starget >devices, &sdev->pertarget id, UINT MAX, sdev, GFP_ATOMIC) ;

-struct list head same target siblings; /* devices sharing same target id */
+u32 pertarget id; /* index into target's device list */

-struct list head devices;

+struct xarray devices;

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

13

ORACLE

	Title Slide with Picture
	Title, Subtitle, and Content Layout
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

